当前位置: X-MOL 学术Heat Mass Transfer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of various shape and nanoparticle concentration based ternary hybrid nanofluid coolant on the thermal performance for automotive radiator
Heat and Mass Transfer ( IF 1.7 ) Pub Date : 2020-11-17 , DOI: 10.1007/s00231-020-02971-1
Rashmi Rekha Sahoo

The performance evaluation of radiator with the application of a new coolant, water-based of various shape nanoparticles i.e., spherical (CuO), cylindrical (CNT), platelet (Graphene) and vol. concentrations based ternary hybrid nanofluid have been investigated theoretically. Impact of heat transfer rate and pressure drop along with exergetic analysis on vol. fraction of ternary hybrid nanofluid, coolant flow rate, and air velocity has been considered. Furthermore, the XRD and SEM morphology analysis have been conducted for 1% vol. fraction of ternary hybrid nanofluid. Theoretical comparative analysis revealed that the change in ternary hybrid concentrations plays a vital role in thermal performance due to its shape factor of nanoparticles. An increment of 19.35% and 7.2% in heat transfer rate and the second law of efficiency, respectively, were observed for variation in vol.fraction range within 1%–3% at 10 lpm. The application of ternary hybrid nanofluid increases the irreversibility of the system with coolant flow rate and air velocity. Entropy change for air is greater compared to entropy change in the coolants and results in a 29.15% increment in entropy change for ternary hybrid nanofluid. Similarly, an increase in air velocity also has the least effect on fan power. This inspection divulges on the particle shape and vol. concentrations both have a critical consequence on the accomplishment of ternary hybrid nanofluids in radiators, and its application is more effective in enhancing the thermal performance for an automotive cooling system.



中文翻译:

基于各种形状和纳米颗粒浓度的三元混合纳米流体冷却剂对汽车散热器热性能的影响

使用新型冷却剂,各种形状的水基纳米颗粒(即球形(CuO),圆柱形(CNT),血小板(Graphene)和vol.n)对散热器进行性能评估。理论上已经研究了基于浓度的三元杂化纳米流体。传热速率和压降的影响以及对体积的高能分析。已经考虑了三元混合纳米流体的分数,冷却剂流速和空气速度。此外,已对1%vol。进行了XRD和SEM形态分析。三元杂化纳米流体的分数。理论比较分析表明,三元杂化浓度的变化由于其纳米颗粒的形状因子而对热性能起着至关重要的作用。传热率和效率第二定律分别增加19.35%和7.2%,在10 lpm时,观察到其体积分数范围在1%–3%之间的变化。三元混合纳米流体的应用随着冷却剂流速和空气速度增加了系统的不可逆性。与冷却剂中的熵变化相比,空气的熵变化更大,导致三元杂化纳米流体的熵变化增加29.15%。同样,增加风速对风扇功率的影响也最小。该检查揭示了颗粒的形状和体积。浓度对散热器中三元混合纳米流体的完成都具有至关重要的作用,其应用在提高汽车冷却系统的热性能方面更为有效。三元混合纳米流体的应用随着冷却剂流速和空气速度增加了系统的不可逆性。与冷却剂中的熵变化相比,空气的熵变化更大,导致三元杂化纳米流体的熵变化增加29.15%。同样,增加风速对风扇功率的影响也最小。该检查揭示了颗粒的形状和体积。浓度对散热器中三元杂化纳米流体的完成都具有至关重要的作用,其应用在提高汽车冷却系统的热性能方面更为有效。三元混合纳米流体的应用随着冷却剂流速和空气速度增加了系统的不可逆性。与冷却剂中的熵变化相比,空气的熵变化更大,导致三元杂化纳米流体的熵变化增加29.15%。同样,增加风速对风扇功率的影响也最小。该检查揭示了颗粒的形状和体积。浓度对散热器中三元杂化纳米流体的完成都具有至关重要的作用,其应用在提高汽车冷却系统的热性能方面更为有效。同样,增加风速对风扇功率的影响也最小。该检查揭示了颗粒的形状和体积。浓度对散热器中三元杂化纳米流体的完成都具有至关重要的作用,其应用在提高汽车冷却系统的热性能方面更为有效。同样,增加风速对风扇功率的影响也最小。该检查揭示了颗粒的形状和体积。浓度对散热器中三元杂化纳米流体的完成都具有至关重要的作用,其应用在提高汽车冷却系统的热性能方面更为有效。

更新日期:2020-11-17
down
wechat
bug