当前位置: X-MOL 学术Mediterr. J. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parabolic Hermite Lipschitz Spaces: Regularity of Fractional Operators
Mediterranean Journal of Mathematics ( IF 1.1 ) Pub Date : 2020-11-13 , DOI: 10.1007/s00009-020-01643-y
Marta De León-Contreras , José L. Torrea

We introduce a pointwise definition of Lipschitz (also called Hölder) spaces adapted to the parabolic Hermite operator \(\mathbb {H}= \partial _t- \Delta _x+|x|^2\) on \(\mathbb {{R}}^{n+1}\). Also for every \(\alpha >0\), we define the following spaces by means of the Poisson semigroup of \(\mathbb {H}\), \(\mathcal {P}_y^{\mathbb {H}}=e^{-y\sqrt{\mathbb {H}}}\):

$$\begin{aligned} \Lambda _\alpha ^{\mathcal {P}^\mathbb {H}}= & {} \left\{ f: \;f\in L^\infty (\mathbb {R}^{n+1})\, \mathrm{and} \, \left\| \partial _y^k e^{-y\sqrt{\mathbb {H}}} f \right\| _{L^\infty (\mathbb {R}^{n+1})}\right. \\&\left. \le C_k y^{-k+\alpha },\, \mathrm {for}\, k=[\alpha ]+1,\;y>0 \right\} , \end{aligned}$$

with the obvious norm. We prove that both spaces do coincide and their norms are equivalent. For the harmonic oscillator, \(\mathcal {{H}}=-\Delta _x+|x|^2\), Stinga and Torrea introduced in 2011 adapted Hölder classes. Parallel to the parabolic case, we characterize these pointwise Hölder spaces via the \(L^\infty \) norm of the derivatives of the Poisson and heat semigroups, \(e^{-y\sqrt{\mathcal {{H}}}}\) and \(e^{-\tau \mathcal {{H}}}\), respectively. As important applications of these semigroups characterizations, we get regularity results regarding the boundedness in these adapted Lipschitz spaces of operators related to \(\mathbb {H}\) and \(\mathcal {{H}}\) as fractional (positive and negative) powers, Bessel potentials, Hermite Riesz transforms, and Laplace transform multipliers, in a more direct way. The proofs use in a fundamental way the semigroup definition of the operators considered along the paper. The non-convolution structure of the operators produces an extra difficulty on the arguments.



中文翻译:

抛物型Hermite Lipschitz空间:分数算子的正则性

我们引入李普希茨(也称为保持体)的逐点定义的空间适合于抛物面埃尔米特操作者\(\ mathbb {H} = \局部_t- \德尔塔_x + | X | ^ 2 \)\(\ mathbb {{R} } ^ {n + 1} \)。同样,对于每个\(\ alpha> 0 \),我们也通过\(\ mathbb {H} \)\(\ mathcal {P} _y ^ {\ mathbb {H}}的泊松半群来定义以下空间= e ^ {-y \ sqrt {\ mathbb {H}}} \)

$$ \ begin {aligned} \ Lambda _ \ alpha ^ {\ mathcal {P} ^ \ mathbb {H}} =&{} \ left \ {f:\; f \ in L ^ \ infty(\ mathbb {R } ^ {n + 1})\,\ mathrm {and} \,\ left \ | \ partial _y ^ ke ^ {-y \ sqrt {\ mathbb {H}}} f \ right \ | _ {L ^ \ infty(\ mathbb {R} ^ {n + 1})} \右。\\&\剩下。\ le C_k y ^ {-k + \ alpha},\,\ mathrm {for} \,k = [\ alpha] +1,\; y> 0 \ right \},\ end {aligned} $$

具有明显的规范。我们证明两个空间确实重合并且它们的范数是等价的。对于谐波振荡器,\(\ mathcal {{H}} =-\ Delta _x + | x | ^ 2 \),Stinga和Torrea于2011年引入,采用了Hölder类。与抛物线情形平行,我们通过泊松和热半群的导数\(e ^ {-y \ sqrt {\ mathcal {{H}} \(L ^ \ infty \)范数来刻画这些点式Hölder空间}} \)\(e ^ {-\ tau \ mathcal {{H}}} \)。作为这些半群特征的重要应用,我们获得了与\(\ mathbb {H} \)\(\ mathcal {{H}} \)相关的算符在这些适应的Lipschitz空间中的有界性的正则性结果作为分数(正和负)幂,贝塞尔势,埃尔米·里兹变换和拉普拉斯变换乘数,以更直接的方式表示。证明从根本上使用了本文中所考虑的算子的半群定义。运算符的非卷积结构在参数上产生了额外的困难。

更新日期:2020-11-13
down
wechat
bug