Skip to main content
Log in

Parabolic Hermite Lipschitz Spaces: Regularity of Fractional Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a pointwise definition of Lipschitz (also called Hölder) spaces adapted to the parabolic Hermite operator \(\mathbb {H}= \partial _t- \Delta _x+|x|^2\) on \(\mathbb {{R}}^{n+1}\). Also for every \(\alpha >0\), we define the following spaces by means of the Poisson semigroup of \(\mathbb {H}\), \(\mathcal {P}_y^{\mathbb {H}}=e^{-y\sqrt{\mathbb {H}}}\):

$$\begin{aligned} \Lambda _\alpha ^{\mathcal {P}^\mathbb {H}}= & {} \left\{ f: \;f\in L^\infty (\mathbb {R}^{n+1})\, \mathrm{and} \, \left\| \partial _y^k e^{-y\sqrt{\mathbb {H}}} f \right\| _{L^\infty (\mathbb {R}^{n+1})}\right. \\&\left. \le C_k y^{-k+\alpha },\, \mathrm {for}\, k=[\alpha ]+1,\;y>0 \right\} , \end{aligned}$$

with the obvious norm. We prove that both spaces do coincide and their norms are equivalent. For the harmonic oscillator, \(\mathcal {{H}}=-\Delta _x+|x|^2\), Stinga and Torrea introduced in 2011 adapted Hölder classes. Parallel to the parabolic case, we characterize these pointwise Hölder spaces via the \(L^\infty \) norm of the derivatives of the Poisson and heat semigroups, \(e^{-y\sqrt{\mathcal {{H}}}}\) and \(e^{-\tau \mathcal {{H}}}\), respectively. As important applications of these semigroups characterizations, we get regularity results regarding the boundedness in these adapted Lipschitz spaces of operators related to \(\mathbb {H}\) and \(\mathcal {{H}}\) as fractional (positive and negative) powers, Bessel potentials, Hermite Riesz transforms, and Laplace transform multipliers, in a more direct way. The proofs use in a fundamental way the semigroup definition of the operators considered along the paper. The non-convolution structure of the operators produces an extra difficulty on the arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardis, A., Martín-Reyes, F.J., Stinga, P.R., Torrea, J.L.: Maximum principles, extension problem and inversion for nonlocal one-sided equations. J. Differential Equations 260, 6333–6362 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bongioanni, B., Harboure, E., Salinas, O.: Weighted inequalities for negative powers of Schrödinger operators. J. Math. Anal. Appl. 348, 12–27 (2008)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A., Stinga, P.R.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 767–807 (2016)

    Article  MathSciNet  Google Scholar 

  5. De León-Contreras, M., Torrea, J.L.: Lipschitz spaces adapted to Schrödinger operators and regularity properties. Rev Mat Complut (2020). https://doi.org/10.1007/s13163-020-00357-9

  6. Gatto, A.E., Urbina, W.O.: On Gaussian Lipschitz spaces and the boundedness of fractional integrals and fractional derivatives on them. Quaest. Math. 38, 1–25 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2002)

    Google Scholar 

  8. Krantz, S.G.: Lipschitz spaces, smoothness of functions, and approximation theory. Exposition. Math. 1(3), 193–260 (1983)

    MathSciNet  MATH  Google Scholar 

  9. Krylov, N.V.: Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, vol. 12. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  10. Liu, L., Sjögren, P.: A characterization of the Gaussian Lipschitz space and sharp estimates for the Ornstein-Uhlenbeck Poisson kernel. Rev. Mat. Iberoam. 32, 1189–1210 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ma, T., Stinga, P.R., Torrea, J.L., Zhang, C.: Regularity properties of Schrödinger operators. J. Math. Anal. Appl. 388, 817–837 (2012)

    Article  MathSciNet  Google Scholar 

  12. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator, PhD Thesis, The University of Texas at Austin, 2005

  13. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J (1970)

  14. Stempak, K., Torrea, J.L.: Poisson integrals and Riesz transforms for Hermite function expansions with weights. J. Funct. Anal. 202, 443–472 (2003)

    Article  MathSciNet  Google Scholar 

  15. Stinga, P.R.: User’s guide to the fractional Laplacian and the method of semigroups. Handbook of Fractional Calculus with Applications (2019). https://doi.org/10.1515/9783110571660

  16. Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differential Equations 35, 2092–2122 (2010)

    Article  MathSciNet  Google Scholar 

  17. Stinga, P.R., Torrea, J.L.: Regularity theory for the fractional harmonic oscillator. J. Funct. Anal. 260, 3097–3131 (2011)

    Article  MathSciNet  Google Scholar 

  18. Stinga, P.R., Torrea, J.L.: Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation. SIAM Journal of Mathematical Analysis 49, 3893–3924 (2017)

    Article  MathSciNet  Google Scholar 

  19. Taibleson, M.: On the theory of Lipschitz spaces of distributions on Euclidean n-space I. J. Math. Mech 13, 407–480 (1964)

    MathSciNet  MATH  Google Scholar 

  20. Taibleson, M.: On the theory of Lipschitz spaces of distributions on Euclidean n-space II. J. Math. Mech. 1, 821–840 (1965)

    Google Scholar 

  21. Taibleson, M.: On the theory of Lipschitz spaces of distributions on Euclidean n-space III. J. Math. Mech. 15, 973–981 (1966)

    MathSciNet  MATH  Google Scholar 

  22. Thangavelu, S.: Lectures on Hermite and Laguerre expansions, volume 42 of Mathematical Notes. Princeton University Press, Princeton, NJ (1993). With a preface by Robert S. Strichartz

  23. Zygmund, A.: Trigonometric Series, 2nd ed., Vol I, II. Cambridge University Press, New York (1959)

Download references

Acknowledgements

The authors are grateful to the reviewers for their thorough work. Their comments and suggestions have been very useful to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Torrea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by Ministerio de Ciencia e Innovación de España PGC2018-099124-B-I00 (MINECO/FEDER) and EPSRC research Grant EP/S029486/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De León-Contreras, M., Torrea, J.L. Parabolic Hermite Lipschitz Spaces: Regularity of Fractional Operators. Mediterr. J. Math. 17, 205 (2020). https://doi.org/10.1007/s00009-020-01643-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01643-y

Keywords

Mathematics Subject Classification

Navigation