当前位置: X-MOL 学术Acta Mech. Solida Sin. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Mechanical Properties and Energy Dissipation Characteristics of Frozen Soil Under Passive Confined Pressure
Acta Mechanica Solida Sinica ( IF 2.0 ) Pub Date : 2020-11-08 , DOI: 10.1007/s10338-020-00200-0
Jinxuan Jia , Huaiping Tang , Huijian Chen

Impact compression tests on frozen soil samples with different freezing temperatures and subjected to passive confined pressure were performed using a split Hopkinson pressure bar at different loading strain rates. The three-dimensional stress–strain curves of the frozen soil samples under the corresponding conditions were obtained. The experimental results showed that, when the frozen soil was loaded to its elastic limit, shear failure occurred, the bearing capacity of pore ice was lost, and the thawed soil functioned as the main stress-bearing body. Nevertheless, the capacity of frozen soil to withstand hydrostatic pressure continued to increase. The dynamic mechanical properties of the frozen soil under passive confined pressure were observed to be strongly related to the loading strain rate and freezing temperature. As the loading strain rate increased, the secant modulus, elastic modulus, and strength (including the shear strength) of the frozen soil increased, whereas its Poisson’s ratio and coefficient of lateral pressure decreased. As the freezing temperature decreased, the secant modulus, elastic modulus, and shear strength of the frozen soil increased; however, its Poisson’s ratio and coefficient of lateral pressure decreased. When the frozen soil was subjected to impact loading under passive confined pressure, energy dissipation occurred due to plastic deformation, mesoscopic damage evolution, and ice–water phase transition. When shear failure occurred, the absorption energy per unit volume of frozen soil increased as the freezing temperature decreased and the loading strain rate increased.



中文翻译:

被动承压下冻土的动态力学性能和耗能特性。

使用分开的Hopkinson压力棒在不同的载荷应变率下,对具有不同冻结温度并经受被动约束压力的冻结土壤样品进行冲击压缩试验。得到了相应条件下冻土样品的三维应力-应变曲线。试验结果表明,当冻土加载至其弹性极限时,发生剪切破坏,孔隙冰的承载力丧失,融化的土成为主要的承压体。然而,冻土承受静水压力的能力继续增加。观察到被动约束压力下冻土的动态力学性能与载荷应变率和冷冻温度密切相关。随着荷载应变率的增加,冻土的割线模量,弹性模量和强度(包括剪切强度)增加,而泊松比和侧压力系数减小。随着冰冻温度的降低,冰冻土的割线模量,弹性模量和剪切强度增加。然而,其泊松比和侧向压力系数降低了。当冻土在被动承压下承受冲击载荷时,由于塑性变形,介观破坏演化和冰水相变而发生了能量耗散。当发生剪切破坏时,随着冻结温度的降低和荷载应变率的增加,单位体积的冻土吸收能增加。冻土的强度(包括抗剪强度)增加,泊松比和侧压力系数减小。随着冰冻温度的降低,冰冻土的割线模量,弹性模量和剪切强度增加。然而,其泊松比和侧向压力系数降低了。当冻土在被动承压下承受冲击载荷时,由于塑性变形,介观破坏演化和冰水相变而发生了能量耗散。当发生剪切破坏时,随着冻结温度的降低和荷载应变率的增加,单位体积的冻土吸收能增加。冻土的强度(包括抗剪强度)增加,泊松比和侧压力系数减小。随着冰冻温度的降低,冰冻土的割线模量,弹性模量和剪切强度增加。然而,其泊松比和侧向压力系数降低了。当冻土在被动承压下承受冲击载荷时,由于塑性变形,介观破坏演化和冰水相变而发生了能量耗散。当发生剪切破坏时,随着冻结温度的降低和荷载应变率的增加,单位体积的冻土吸收能增加。随着冰冻温度的降低,冰冻土的割线模量,弹性模量和剪切强度增加。然而,其泊松比和侧向压力系数降低了。当冻土在被动承压下承受冲击载荷时,由于塑性变形,介观破坏演化和冰水相变而发生了能量耗散。当发生剪切破坏时,随着冻结温度的降低和荷载应变率的增加,单位体积的冻土吸收能增加。随着冰冻温度的降低,冰冻土的割线模量,弹性模量和剪切强度增加。然而,其泊松比和侧向压力系数降低了。当冻土在被动承压下承受冲击载荷时,由于塑性变形,介观破坏演化和冰水相变而发生了能量耗散。当发生剪切破坏时,随着冻结温度的降低和荷载应变率的增加,单位体积的冻土吸收能增加。能量耗散是由于塑性变形,介观损伤演化和冰水相变而产生的。当发生剪切破坏时,随着冻结温度的降低和荷载应变率的增加,单位体积的冻土吸收能增加。能量耗散是由于塑性变形,介观破坏演化和冰水相变而产生的。当发生剪切破坏时,随着冻结温度的降低和荷载应变率的增加,单位体积的冻土吸收能增加。

更新日期:2020-11-09
down
wechat
bug