当前位置: X-MOL 学术Exp. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On analytical and experimental aspects of soap bubble stream charging
Experiments in Fluids ( IF 2.3 ) Pub Date : 2020-11-05 , DOI: 10.1007/s00348-020-03078-3
Adam Pelesz , Pawel Zylka

The paper discusses the applicability and advantages of using electrically charged soap bubbles as a route to produce fine sprays composed of highly charged particles, commonly named as electroaerosols. It is indicated that such low in energy demand process may produce very fine droplets or particulates charged to a level higher than that obtained using classical spray charging techniques, involving no bubbles. A process of a soap bubble electrical charging is thus initially studied on a simple analytical basis pointing out to a possibility of producing air bubbles with charge-to-mass (Q/m) ratio up to 60 mC/kg (constrained by the Rayleigh limit) while just 2 mC/kg is commonly considered as a threshold value for an effective particle charging process. Finite element 3D electrostatic simulation method (3D FEM) is then applied to assess a single bubble charging level achievable in a laboratory setup using a DC high-voltage biased bubble machine producing soap bubbles 23 mm in diameter on average. The 3D FEM simulation results postulate a single bubble maximum charging level approaching 25 nC at 41.5 kV charging voltage (constrained by the Rayleigh limit), corresponding to (Q/m) = 17.6 mC/kg. Finally, a stream of bubbles characterized by (Q/m) = 10.4 mC/kg was produced experimentally in the laboratory setup using a contact charging method at 40 kV DC supply. A discrepancy between 3D FEM-simulated results and experimental data was discussed on a shielding effect basis.

中文翻译:

关于肥皂泡流充电的分析和实验方面

该论文讨论了使用带电肥皂泡作为产生由高带电粒子(通常称为电气溶胶)组成的精细喷雾的途径的适用性和优势。表明这种低能量需求的过程可以产生非常细的液滴或颗粒,其充电水平高于使用经典喷雾充电技术获得的水平,不涉及气泡。因此,最初在简单的分析基础上研究了肥皂泡充电过程,指出产生电荷质量 (Q/m) 比高达 60 mC/kg(受瑞利极限限制)的可能性) 而只有 2 mC/kg 通常被认为是有效粒子充电过程的阈值。然后应用有限元 3D 静电模拟方法 (3D FEM) 来评估在实验室设置中可实现的单个气泡充电水平,使用直流高压偏置气泡机产生平均直径为 23 毫米的肥皂泡。3D FEM 模拟结果假设单个气泡最大充电水平在 41.5 kV 充电电压下接近 25 nC(受瑞利极限约束),对应于 (Q/m) = 17.6 mC/kg。最后,在实验室设置中使用接触充电方法在 40 kV 直流电源下实验性地产生了以 (Q/m) = 10.4 mC/kg 为特征的气泡流。在屏蔽效应的基础上讨论了 3D FEM 模拟结果与实验数据之间的差异。
更新日期:2020-11-05
down
wechat
bug