当前位置: X-MOL 学术Biochip J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation Guided Microfluidic Design for Multitarget Separation Using Dielectrophoretic Principle
BioChip Journal ( IF 5.5 ) Pub Date : 2020-10-27 , DOI: 10.1007/s13206-020-4406-x
Mohamed Zackria Ansar B.I. , Vineet Tirth , Caffiyar Mohamed Yousuff , Neeraj Kumar Shukla , Saiful Islam , Kashif Irshad , K. O. Mohammed Aarif

Microfluidic technologies have emerged as a potential tool for point of care — diagnostics and therapeutics applications. Isolation of multi-targets (Cancer cells along with platelets, red blood cells (RBCs), white blood cells (WBCs), and antigen-presenting cells (APCs)) simultaneously is of great interest in drug discovery and medical diagnosis. By utilizing dielectrophoresis (DEP) effect inside the micro channel, several attempts were made to separate binary mixtures by precisely controlling and manipulating the motion of the particles. However, all of these methods limit its applicability for multi-target particle separation in a single run. In this paper, we attempt to develop a simulation model with novel electrode arrangements to isolate multiple particles using negative DEP. Our proposed model establishes criteria for separating micron-sized particle mixtures (3µm, 7µm, 15µm, 20µm, 25µm) with various electrode shapes, electrode potentials, inlet velocities, and channel widths. The device efficiency was evaluated for a triangular electrode, square-shaped electrode, and rectangular electrode under various practical design constraints. Our study demonstrates an optimum solution for effective separation of particle mixtures using triangular electrode arrangements (utilizing less voltage) and a wider channel of 300µm width that eventually avoid channel clogging issues due to cells inside main channel and collection channels. While evaluating the separation efficiency of the proposed design, we observe that platelets, RBCs, WBCs, APCs, and CTCs experienced distinct DEP force on each, allowing them to collect in different collection outlets without any cross-mixing. Hence our proposed design allows flexibility to the researchers working on DEP by using a wider channel with triangular electrode arrangements enabling them to fabricate the device under resource-limited constraints.



中文翻译:

基于介电泳原理的多目标分离的仿真指导微流设计

微流体技术已经成为一种潜在的护理点工具-诊断和治疗应用。同时分离多靶标(癌细胞与血小板,红细胞(RBC),白细胞(WBC)和抗原呈递细胞(APC))在药物发现和医学诊断中非常重要。通过利用微通道内部的介电电泳(DEP)效应,人们进行了一些尝试,以通过精确控制和操纵粒子的运动来分离二元混合物。但是,所有这些方法都限制了其在单次运行中用于多目标粒子分离的适用性。在本文中,我们尝试开发一种具有新型电极布置的模拟模型,以使用负DEP隔离多个颗粒。我们提出的模型为分离具有各种电极形状,电极电势,入口速度和通道宽度的微米级颗粒混合物(3μm,7μm,15μm,20μm,25μm)建立了标准。在各种实际设计约束下,对三角形电极,方形电极和矩形电极的器件效率进行了评估。我们的研究证明了使用三角电极装置(利用较少的电压)和300μm宽的较宽通道可以有效分离颗粒混合物的最佳解决方案,最终避免了由于主通道和收集通道内的细胞而造成的通道堵塞问题。在评估拟议设计的分离效率时,我们观察到血小板,RBC,WBC,APC和CTC在每个样品上均受到不同的DEP力,允许他们将它们收集在不同的收集网点,而无需任何交叉混合。因此,我们建议的设计允许使用DEP的研究人员具有更大的灵活性,方法是使用带有三角形电极排列的较宽通道,从而使他们能够在资源有限的约束下制造设备。

更新日期:2020-11-03
down
wechat
bug