Skip to main content
Log in

Simulation Guided Microfluidic Design for Multitarget Separation Using Dielectrophoretic Principle

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Microfluidic technologies have emerged as a potential tool for point of care — diagnostics and therapeutics applications. Isolation of multi-targets (Cancer cells along with platelets, red blood cells (RBCs), white blood cells (WBCs), and antigen-presenting cells (APCs)) simultaneously is of great interest in drug discovery and medical diagnosis. By utilizing dielectrophoresis (DEP) effect inside the micro channel, several attempts were made to separate binary mixtures by precisely controlling and manipulating the motion of the particles. However, all of these methods limit its applicability for multi-target particle separation in a single run. In this paper, we attempt to develop a simulation model with novel electrode arrangements to isolate multiple particles using negative DEP. Our proposed model establishes criteria for separating micron-sized particle mixtures (3µm, 7µm, 15µm, 20µm, 25µm) with various electrode shapes, electrode potentials, inlet velocities, and channel widths. The device efficiency was evaluated for a triangular electrode, square-shaped electrode, and rectangular electrode under various practical design constraints. Our study demonstrates an optimum solution for effective separation of particle mixtures using triangular electrode arrangements (utilizing less voltage) and a wider channel of 300µm width that eventually avoid channel clogging issues due to cells inside main channel and collection channels. While evaluating the separation efficiency of the proposed design, we observe that platelets, RBCs, WBCs, APCs, and CTCs experienced distinct DEP force on each, allowing them to collect in different collection outlets without any cross-mixing. Hence our proposed design allows flexibility to the researchers working on DEP by using a wider channel with triangular electrode arrangements enabling them to fabricate the device under resource-limited constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhao, S., Liu, Y., Zhang, Q., Li, H., Zhang, M., Ma, W., Zhao, W., Wang, J. & Yang, M. The prognostic role of circulating tumor cells (CTCs) detected by RT-PCR in breast cancer: a meta-analysis of published literature. Breast Cancer Res. Treat. 130, 809–816 (2011).

    Article  PubMed  Google Scholar 

  2. Cen, P., Ni, X., Yang, J., Graham, D.Y. & Li, M. Circulating tumor cells in the diagnosis and management of pancreatic cancer. Biochim. Biophys. Acta, Rev. Cancer 1826, 350–356 (2012).

    Article  CAS  Google Scholar 

  3. Gorges, T.M. & Pantel, K. Circulating tumor cells as therapy-related biomarkers in cancer patients. Cancer Immunol. Immunother. 62, 931–939 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Andree, K.C., van Dalum, G. & Terstappen, L.W. M.M. Challenges in circulating tumor cell detection by the CellSearch system. Mol. Oncol. 10, 395–407 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Cho, H., Kim, J., Song, H., Sohn, K.Y., Jeon, M. & Han, K.H. Microfluidic technologies for circulating tumor cell isolation. Analyst 143, 2936–2970 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Basha, I.H.K., Ho, E.T.W., Yousuff, C.M. & Hamid, N.H.B. Towards multiplex molecular diagnosis—a review of microfluidic genomics technologies. Micromachines 8, 266 (2017).

    Article  PubMed Central  Google Scholar 

  7. Zou, D. & Cui, D. Advances in isolation and detection of circulating tumor cells based on microfluidics. Cancer Biol. Med. 15, 335–353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, H., Zhang, Z. & Wang, B. Size- and deform-ability-based isolation of circulating tumor cells with microfluidic chips and their applications in clinical studies. AIP Adv. 8, 120701 (2018).

    Article  CAS  Google Scholar 

  9. Zhang, H., Chang, H. & Neuzil, P. DEP-on-a-chip: Dielectrophoresis applied to microfluidic platforms. Micromachines 10, 423 (2019).

    Article  PubMed Central  Google Scholar 

  10. Khoshmanesh, K., Nahavandi, S., Baratchi, S., Mitchell, A. & Kalantar-zadeh, K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens. Bioelectron. 26, 1800–1814 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Barik, A., Zhang, Y., Grassi, R., Nadappuram, B.P., Edel, J.B., Low, T., Koester, S.J. & Oh, S.H. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nat. Commun. 8, 1867 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yu, E.S., Lee, H., Lee, S.M., Kim, J., Kim, T., Lee, J., Kim, C., Seo, M., Kim, J.H., Byun, Y.T., Park, S.C., Lee, S.Y., Lee, S.D. & Ryu, Y.S. Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures. Nat. Commun. 11, 1–9 (2020).

    Article  CAS  Google Scholar 

  13. Song, H., Rosano, J.M., Wang, Y., Garson, C.J., Prabhakarpandian, B., Pant, K., Klarmann, G.J., Perantoni, A., Alvarez, L.M. & Lai, E. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip 15, 1320–1328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lewpiriyawong, N., Yang, C. & Lam, Y.C. Dielectrophoretic manipulation of particles in a modified microfluidic H filter wuth multi-insulating blocks. Biomicrofluidics 2, 034105 (2008).

    Article  PubMed Central  CAS  Google Scholar 

  15. Jubery, T.Z., Srivastava, S.K. & Dutta, P. Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis 35, 691–713 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Piacentini, N., Mernier, G., Tornay, R. & Renaud, P. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5, 34122–341228 (2011).

    Article  PubMed  CAS  Google Scholar 

  17. Park, J., Kim, B., Choi, S.K., Hong, S., Lee, S.H. & Lee, K.-I. An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip 5, 1264–1270 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hawkins, B.G., Lai, N. & Clague, D.S. High-sensitivity in dielectrophoresis separations. Micromachines 11, 391 (2020).

    Article  PubMed Central  Google Scholar 

  19. Adams, T.N.G., Jiang, A.Y.L., Vyas, P.D. & Flanagan, L.A. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis. Methods 133, 91–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Yildizhan, Y., Erdem, N., Islam, M., Martinez-Duarte, R. & Elitas, M. Dielectrophoretic separation of live and dead monocytes using 3D carbon-electrodes. Sensors (Switzerland) 17, 2691 (2017).

    Article  CAS  Google Scholar 

  21. Gascoyne, P.R.C. & Shim, S. Isolation of circulating tumor cells by dielectrophoresis. Cancers (Basel) 6, 545–579 (2014).

    Article  CAS  Google Scholar 

  22. Huang, S.-B., Wu, M.-H., Lin, Y.-H., Hsieh, C.-H., Yang, C.-L., Lin, H.-C., Tseng, C.-P. & Lee, G.-B. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Lab Chip 13, 1371–1383 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Lewpiriyawong, N. & Yang, C. AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes. Biomicrofluidics 6, 12807–128079 (2012).

    Article  PubMed  CAS  Google Scholar 

  24. Wang, L., Lu, J., Marchenko, S.A, Monuki, E.S., Flanagan, L.A. & Lee, A.P. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30, 782–791 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Zahedi Siani, O., Zabetian Targhi, M., Sojoodi, M. & Movahedin, M. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization. Bioprocess Biosyst. Eng. 43, 1573–1586 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. dos Santos, M.V.P., Béron, F., Pirota, K.R., Diniz, J.A. & Moshkalev, S., 2017. Electrical manipulation of a single nanowire by dielectrophoresis, in: Maaz, K.(Eds.), Nanowires — New Insights. IntechOpen Ltd., Rijeka, pp. 41–58.

    Google Scholar 

  27. Jiang, T., Ren, Y., Liu, W., Tang, D., Tao, Y., Xue, R. & Jiang, H. Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks. Phys. Fluids 30, 112003 (2018).

    Article  CAS  Google Scholar 

  28. Chan, J.Y., Bin Ahmad Kayani, A., Md Ali, M.A., Kok, C.K., Yeop Majlis, B., Hoe, S.L.L., Marzuki, M., Khoo, A.S.B., Ostrikov, K., Ataur Rahman, M. & Sriram, S. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics 12, 011503 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yin, D., Zhang, X., Han, X., Yang, J. & Hu, N. Multi- stage particle separation based on microstructure filtration and dielectrophoresis. Micromachines 10, 103 (2019).

    Article  PubMed Central  Google Scholar 

  30. Aghaamoo, M., Aghilinejad, A. & Chen, X. Numerical study of insulator-based dielectrophoresis method for circulating tumor cell separation. Proc. SPIE 10061, Microfluidics, BioMEMS, and Medical Microsystems XV, 100611A DOI https://doi.org/10.1117/12.2260759 (2017).

  31. Krishna, S., Alnaimat, F. & Mathew, B. Nozzle-Shaped Electrode Configuration for Dielectrophoretic 3D-Focusing of Microparticles. Micromachines 10, 585 (2019).

    Article  PubMed Central  Google Scholar 

  32. Nada, A., Omar, M. & Abdulhameed Sayed, A.M. Separation modeling of blood cells using dielectro-phoretic field flow. Int. J. Comput. Appl. 181, 36–41 (2018).

    Google Scholar 

  33. Zhang, Y. & Chen, X. Dielectrophoretic microfluidic device for separation of red blood cells and platelets: a model-based study. J. Brazilian Soc. Mech. Sci. Eng. 42, 89 (2020).

    Article  CAS  Google Scholar 

  34. Shirmohammadli, V. & Manavizadeh, N. Application of differential electrodes in a dielectrophoresis-based device for cell separation. IEEE Trans. Electron Devices 66, 4075–4080 (2019).

    Article  CAS  Google Scholar 

  35. Kim, U. & Soh, H.T. Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic-magnetic activated cell sorter. Lab Chip 9, 2313–2318 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Mohamed Yousuff, C., Hamid, N.H.B., Kamal Basha, I.H. & Wei Ho, E.T. Output channel design for collecting closely-spaced particle streams from spiral inertial separation devices. AIP Adv. 7, 085004 (2017).

    Article  CAS  Google Scholar 

  37. Zeinali, S., Çetin, B., Oliaei, S.N.B. & Karpat, Y. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining. Electrophoresis 36, 1432–1442 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Hart, F.X. & Palisano, J.R. The Application of Electric Fields in Biology and Medicine. Electric Field 161–186 (2018).

  39. Zhu, J. & Xuan, X. Particle electrophoresis and dielectrophoresis in curved microchannels. J. Colloid Interface Sci. 340, 285–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Szydzik, C., Khoshmanesh, K., Mitchell, A. & Karnutsch, C. Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis. Biomicrofluidics 9, 064120 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ghoshal, K. & Bhattacharyya, M. Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis. Sci. World J. 2014, 781857 (2014).

    Article  Google Scholar 

  42. Everts, P.A.M., Knape, J.T.A., Weibrich, G., Schönberger, J.P.A.M., Hoffmann, J., Overdevest, E.P., Box, H.A.M. & van Zundert, A. Platelet-rich plasma and platelet gel: A review. J. Extra-Corpor. Technol. 38, 174–187 (2006).

    PubMed  PubMed Central  Google Scholar 

  43. Shvalov, A.N., Soini, J.T., Chernyshev, A.V., Tarasov, P.A., Soini, E. & Maltsev, V.P. Light-scattering properties of individual erythrocytes. Appl. Opt. 38, 230–235 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. A.G. Borovoi, Naats, E.I. & Oppel, U.G. Scattering of light by a red blood cell. J. Biomed. Opt. 3, 3 (1998).

    Article  Google Scholar 

  45. Krombach, F., Münzing, S., Allmeling, A.M., Gerlach, J.T., Behr, J. & Dörger, M. Cell size of alveolar macrophages: an interspecies comparison. Environ. Health Perspect. 105Suppl 5(Suppl 5), 1261–1263 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu, L., Lanry Yung, L.Y. & Lim, K.M. Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. Biomicrofluidics 6, 014113 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  47. Acharyya, S., Matrisian, L., Welch, D.R. & Massagué, J., 2014. The Molecular Basis of Cancer: Fourth Edition, Mole. Basis Cancer Fourth Ed. Elsevier Inc., pp. 269–284.e2.

  48. Cook, H.F. A comparison of the dielectric behaviour of pure water and human blood at microwave frequencies. Br. J. Appl. Phys. 3, 249–255 (1952).

    Article  Google Scholar 

  49. Texter Jr., E.C., Hirsch, F.G., Horan, F.E., Wood, L.A., Ballard Jr., W.C., Wright, I.S., Starr, D. & Blandin, B.P. Blood 5, 1036–1048 (1950).

    Article  PubMed  Google Scholar 

  50. Kuan, D.H., Wu, C.C., Su, W.Y. & Huang, N.T. A microfluidic device for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping. Sci. Rep. 8, 15345 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Salmanzadeh, A., Sano, M.B., Gallo-Villanueva, R. C., Roberts, P.C., Schmelz, E.M. & Davalos, R.V. Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells. Biomicrofluidics 7, 11809 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the funding provided by the Scientific Research Deanship, King Khalid University, Kingdom of Saudi Arabia for the Large Research Group, under the grant number R.G.P2./82/41.Authors also thanks Research and Development laboratory, ECE, C. Abdul Hakeem College of Engineering & Technology, Melvisharam for providing support to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caffiyar Mohamed Yousuff.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

B.I., M.Z.A., Tirth, V., Yousuff, C.M. et al. Simulation Guided Microfluidic Design for Multitarget Separation Using Dielectrophoretic Principle. BioChip J 14, 390–404 (2020). https://doi.org/10.1007/s13206-020-4406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4406-x

Keywords

Navigation