当前位置: X-MOL 学术Microfluid. Nanofluid. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
2D acoustofluidic patterns in an ultrasonic chamber modulated by phononic crystal structures
Microfluidics and Nanofluidics ( IF 2.3 ) Pub Date : 2020-10-22 , DOI: 10.1007/s10404-020-02394-8
Qiang Tang , Pengzhan Liu , Xin Guo , Song Zhou , Yuwei Dong

Controllable manipulation of micro/nano-particles and biological organisms are essential for the engineering development of miniaturized lab-on-a-chip systems in the application of physical, chemical, and biological researches. In this paper, a series of phononic crystal structure based acoustofluidic devices, which are actuated by incident plane wave at different frequencies, have been proposed and numerically investigated for micro-particle manipulation. The interaction between different phononic crystal structures and ultrasonic waves, providing reflection, scattering and diffraction, can generate diverse spatial variations of sound field distribution along the wave propagation path. The combination of phononic crystal structures and lab-on-a-chip devices is beneficial to overcome the monotonousness of the acoustofluidic field distribution for various physical and biochemical applications. The movement trajectories of micro-particles under the influence of acoustic radiation forces and acoustic streaming induced drag forces are also simulated to demonstrate the particle manipulation capability of the designed acoustofluidic device. Our simulation results suggest the possibility of considering phononic crystal structures as an effective ingredient to customize acoustofluidic field for constituting diverse lab-on-a-chip devices in the investigation of rapid microfluidic mixing and non-invasive manipulation of bio-organisms.



中文翻译:

由声子晶体结构调制的超声腔中的二维声流体模式

在物理,化学和生物学研究应用中,对微型/纳米颗粒和生物有机体的可控操纵对于微型化单芯片实验室系统的工程开发至关重要。在本文中,提出了一系列基于声子晶体结构的声流体装置,这些装置由不同频率的入射平面波驱动,并进行了数值研究以用于微粒操纵。不同声子晶体结构与超声波之间的相互作用(提供反射,散射和衍射)可以沿波传播路径生成声场分布的各种空间变化。声子晶体结构和芯片实验室设备的结合对于克服各种物理和生化应用中声流场分布的单调性是有益的。还模拟了在声辐射力和声流诱导的阻力作用下微粒的运动轨迹,以证明所设计的声流体装置的粒子操纵能力。我们的模拟结果表明,在研究快速微流体混合和生物的无创操纵研究中,可以考虑将声子晶体结构作为有效成分来定制声流场,以构成各种芯片实验室设备。还模拟了在声辐射力和声流诱导的阻力作用下微粒的运动轨迹,以证明所设计的声流体装置的粒子操纵能力。我们的模拟结果表明,在研究快速微流体混合和生物的无创操纵研究中,可以考虑将声子晶体结构作为有效成分来定制声流场,以构成各种芯片实验室设备。还模拟了在声辐射力和声流诱导的阻力作用下微粒的运动轨迹,以证明所设计的声流体装置的粒子操纵能力。我们的模拟结果表明,在研究快速微流体混合和生物的无创操纵研究中,可以考虑将声子晶体结构作为有效成分来定制声流场,以构成各种芯片实验室设备。

更新日期:2020-10-30
down
wechat
bug