Skip to main content
Log in

2D acoustofluidic patterns in an ultrasonic chamber modulated by phononic crystal structures

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Controllable manipulation of micro/nano-particles and biological organisms are essential for the engineering development of miniaturized lab-on-a-chip systems in the application of physical, chemical, and biological researches. In this paper, a series of phononic crystal structure based acoustofluidic devices, which are actuated by incident plane wave at different frequencies, have been proposed and numerically investigated for micro-particle manipulation. The interaction between different phononic crystal structures and ultrasonic waves, providing reflection, scattering and diffraction, can generate diverse spatial variations of sound field distribution along the wave propagation path. The combination of phononic crystal structures and lab-on-a-chip devices is beneficial to overcome the monotonousness of the acoustofluidic field distribution for various physical and biochemical applications. The movement trajectories of micro-particles under the influence of acoustic radiation forces and acoustic streaming induced drag forces are also simulated to demonstrate the particle manipulation capability of the designed acoustofluidic device. Our simulation results suggest the possibility of considering phononic crystal structures as an effective ingredient to customize acoustofluidic field for constituting diverse lab-on-a-chip devices in the investigation of rapid microfluidic mixing and non-invasive manipulation of bio-organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang TJ (2016) Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 7:11085

    Google Scholar 

  • Bourquin Y, Reboud J, Wilson R, Cooper JM (2010) Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips. Lab Chip 10(15):1898–1901

    Google Scholar 

  • Bourquin Y, Wilson R, Zhang Y, Reboud J, Cooper JM (2011) Phononic crystals for shaping fluids. Adv Mater 23(12):1458–1462

    Google Scholar 

  • Bruus H (2012b) Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12(1):20–28

    Google Scholar 

  • Bruus H (2012a) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12(6):1014–1021

    Google Scholar 

  • Cai F, He Z, Liu Z, Meng L, Cheng X, Zheng H (2011) Acoustic trapping of particle by a periodically structured stiff plate. Appl Phys Lett 99:253505

    Google Scholar 

  • Chen J, Cong H, Loo FC, Kang Z, Tang M, Zhang H, Wu SY, Kong SK, Ho HP (2016) Thermal gradient induced tweezers for the manipulation of particles and cells. Sci Rep 6:35814

    Google Scholar 

  • Connacher W, Zhang N, Huang A, Mei J, Zhang S, Gopesh T, Friend J (2018) Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab Chip 18(14):1952–1996

    Google Scholar 

  • Dai H, Xia B, Yu D (2019) Acoustic patterning and manipulating microparticles using phononic crystal. J Phys D Appl Phys 52:425302

    Google Scholar 

  • Dai H, Chen T, Jiao J, Xia B, Yu D (2019) Topological valley vortex manipulation of microparticles in phononic crystals. J Appl Phys 126:145101

    Google Scholar 

  • Dalili A, Samiei E, Hoorfar M (2018) A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 144(1):87–113

    Google Scholar 

  • Destgeer G, Sung HJ (2015) Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip 15(13):2722–2738

    Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Google Scholar 

  • Ehrnström R (2002) Miniaturization and integration: challenges and breakthroughs in microfluidics. Lab Chip 2(2):26N-30N

    Google Scholar 

  • Elford DP, Chalmers L, Kusmartsev FV, Swallowe GM (2011) Matryoshka locally resonant sonic crystal. J Acoust Soc Am 130(5):2746–2755

    Google Scholar 

  • Feng D, Xu DH, Xiong B, Wang YL (2015) Acoustically driven microfluidic devices based on hexagonal phononic crystal structures. In: 18th International conference on solid-state sensors, actuators and microsystems, pp 692–695

  • Folch A (2012) Introduction to BioMEMS. CRC Press, Boca Raton

    Google Scholar 

  • Frank AG (2013) The future of microfluidic point-of-care diagnostic devices. Bioanalysis 5(1):1–3

    Google Scholar 

  • Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647–687

    Google Scholar 

  • Hao N, Liu P, Bachman H, Pei Z, Zhang P, Rufo J, Wang Z, Zhao S, Huang TJ (2020) Acoustofluidics-assisted engineering of multifunctional three-dimensional zinc oxide nanoarrays. ACS Nano 14:6150–6163

    Google Scholar 

  • Hsu JC, Lin YD (2019) Microparticle concentration and separation inside a droplet using phononic-crystal scattered standing surface acoustic waves. Sens Actuat A Phys 300(1):111651

    Google Scholar 

  • Hu J (2014) Ultrasonic micro/nano manipulations: principles and examples. World Scientific Publishing, Singapore

    Google Scholar 

  • Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802

    Google Scholar 

  • Jericho SK, Jericho MH, Hubbard T, Kujath M (2004) Micro-electro-mechanical systems microtweezers for the manipulation of bacteria and small particles. Rev Sci Instrum 75(5):1280–1282

    Google Scholar 

  • Jiang C, Liu X, Liu J, Mao Y, Marston PL (2017) Acoustic radiation force on a sphere in a progressive and standing zero-order quasi-Bessel-Gauss beam. Ultrasonics 76:1–9

    Google Scholar 

  • Kanno Y, Tsuruta K, Fujimori K, Fukano H, Nogi S (2013) Phononic-crystal acoustic lens by design for energy-transmission devices. Electr Commun Jpn 97(1):22–27

    Google Scholar 

  • Karlsen JT, Bruus H (2015) Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Phys Rev E 92(4):043010

    Google Scholar 

  • Ke M, Liu Z, Pang P, Wang W, Cheng Z, Shi J, Zhao X (2006) Highly directional acoustic wave radiation based on asymmetrical two-dimensional phononic crystal resonant cavity. Appl Phys Lett 88:263505

    Google Scholar 

  • Kim SJ, Yokokawa R, Lesher-Perez SC, Takayama S (2015) Multiple independent autonomous hydraulic oscillators driven by a common gravity head. Nat Commun 6:7301

    Google Scholar 

  • Kotz KT, Noble KA, Faris G (2004) Optical microfluidics. Appl Phys Lett 85(13):2658–2660

    Google Scholar 

  • Lam KH, Li Y, Li Y, Lim HG, Zhou Q, Shung KK (2016) Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci Rep 6:37554

    Google Scholar 

  • Lei J (2017) Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces. Microfluid Nanfluid 21:50

    Google Scholar 

  • Lei J, Glynne-Jones P, Hill M (2017) Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Microfluid Nanofluid 21:23

    Google Scholar 

  • Lei J, Hill M, de León P, Albarrán C, Glynne-Jones P (2018) Effects of micron scale surface profiles on acoustic streaming. Microfluid Nanofluid 22:140

    Google Scholar 

  • Lighthill J (1978a) Acoustic streaming. J Sound Vib 61(3):391–418

    MATH  Google Scholar 

  • Lighthill J (1978b) Waves in fluids. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Lin SCS, Mao X, Huang TJ (2012) Surface acoustic wave (SAW) acoustophoresis: now and beyond. Lab Chip 12(16):2766–2770

    Google Scholar 

  • Lisowski P, Zarzycki PK (2013) Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): development. Appl Future Trends Chromatogr 76(19–20):1201–1214

    Google Scholar 

  • Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736

    Google Scholar 

  • Li S, Li M, Bougot-Robin K, Cao W, Chau IYY, Li W, Wen W (2013) High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip. Biomicrofluidics 7(2):024106

    Google Scholar 

  • Li F, Cai F, Liu Z, Meng L, Qian M, Wang C, Cheng Q, Qian M, Liu X, Wu J, Li J, Zheng H (2014) Phononic-crystal-based acoustic sieve for tunable manipulations of particles by a highly localized radiation force. Phys Rev Appl 1:051001

    Google Scholar 

  • Li H, Wang Y, Ke M, Peng S, Liu F, Qiu C, Liu Z (2018) Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate. Appl Phys Lett 112:223501

    Google Scholar 

  • Li F, Yan F, Chen Z, Lei J, Yu J, Chen M, Zhou W, Meng L, Niu L, Wu J, Li J, Cai F, Zheng H (2018) Phononic crystal-enhanced near-boundary streaming for sonoporation. Appl Phys Lett 113:083701

    Google Scholar 

  • Li F, Xiao Y, Lei J, Xia X, Zhou W, Meng L, Niu L, Wu J, Li J, Cai F, Zheng H (2018) Rapid acoustophoretic motion of microparticles manipulated by phononic crystals. Appl Phys Lett 113:173503

    Google Scholar 

  • Li F, Xia X, Deng Z, Lei J, Shen Y, Lin Q, Zhou W, Meng L, Wu J, Cai F, Zheng H (2019) Ultrafast rayleigh-like streaming in a sub-wavelength slit between two phononic crystal plates. J Appl Phys 125:134903

    Google Scholar 

  • Li F, Cai F, Zhang L, Liu Z, Li F, Meng L, Wu J, Li J, Zhang X, Zheng H (2020) Phononic-crystal-enabled dynamic manipulation of microparticles and cells in an acoustofluidic channel. Phys Rev Appl 13:044077

    Google Scholar 

  • Luong TD, Nguyen NT (2010) Surface acoustic wave driven microfluidics—a review. Micro Nanosyst 2(3):217–225

    MathSciNet  Google Scholar 

  • Lu X, Soto F, Li T, Liang Y, Wang J (2017) Topographical manipulation of microparticles and cells with acoustic microstreaming. ACS Appl Mater Interfaces 9(44):38870–38876

    Google Scholar 

  • Lu X, Shen H, Zhao K, Wang Z, Peng H, Liu W (2019) Micro-/nanomachines driven by ultrasonic power sources. Chem Asian J 14(14):2406–2416

    Google Scholar 

  • Mitri FG (2015) Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams. IEEE Trans Ultrason Ferroelectr Freq Control 62(10):1835–1844

    Google Scholar 

  • Muller PB, Barnkob R, Jensen MJH, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12(22):4617–4627

    Google Scholar 

  • Ohno K, Tachikawa K, Manz A (2010) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22):4443–4453

    Google Scholar 

  • Qiu C, Xu S, Ke M, Liu Z (2014) Acoustically-induced strong interaction between two periodically patterned elastic plates. Phys Rev B 90:094109

    Google Scholar 

  • Reboud J, Wilson R, Zhang Y, Ismail MH, Bourquin Y, Cooper JM (2012) Nebulisation on a disposable array structured with phononic lattices. Lab Chip 12(7):1268–1273

    Google Scholar 

  • Reboud J, Bourquin Y, Wilson R, Pall GS, Jiwaji M, Pitt AR, Graham A, Waters AP, Cooper JM (2012) Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc Natl Acad Sci USA 109(38):15162–15167

    Google Scholar 

  • Reverté L, Prieto-Simón B, Campàs M (2016) New advances in electrochemical biosensors for the detection of toxins: nanomaterials, magnetic beads and microfluidics systems. A review. Anal Chim Acta 908:8–21

    Google Scholar 

  • Sadhal SS (2012) Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12(13):2292–2300

    Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310–315

    Google Scholar 

  • Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AIChE J 47(6):1250–1254

    Google Scholar 

  • Tang Q, Hu J (2015) Diversity of acoustic streaming in a rectangular acoustofluidic field. Ultrasonics 58:27–34

    Google Scholar 

  • Tang Q, Wang X, Hu J (2017) Nano concentration by acoustically generated complex spiral vortex field. Appl Phys Lett 110:104105

    Google Scholar 

  • Tang Q, Liu P, Hu J (2018) Analyses of acoustofluidic field in ultrasonic needle-liquid-substrate system for micro-/nanoscale material concentration. Microfluid Nanfluid 22:46

    Google Scholar 

  • Tang Q, Zhou S, Huang L, Chen Z (2019) Diversity of 2D acoustofluidic fields in an ultrasonic cavity generated by multiple vibration sources. Micromachines (Basel) 10(12):803

    Google Scholar 

  • Tang Q, Liang F, Huang L, Zhao P, Wang W (2020) On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array. Biomed Microdevices 22(1):13

    Google Scholar 

  • Temiz Y, Lovchik RD, Kaigala GV, Delamarche E (2015) Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng 132:156–175

    Google Scholar 

  • Wang T, Ke M, Xu S, Feng J, Qiu C, Liu Z (2015) Dexterous acoustic trapping and patterning of particles assisted by phononic crystal plate. Appl Phys Lett 106:163504

    Google Scholar 

  • Wang T, Ke M, Li W, Yang Q, Qiu C, Liu Z (2016) Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Appl Phys Lett 109:123506

    Google Scholar 

  • Wang T, Ke M, Qiu C, Liu Z (2016) Particle trapping and transport achieved via an adjustable acoustic field above a phononic crystal plate. J Appl Phys 119:214502

    Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Google Scholar 

  • Wiklund M (2012) Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12(11):2018–2028

    Google Scholar 

  • Wiklund M, Green R, Ohlin M (2012) Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 12(14):2438–2451

    Google Scholar 

  • Wilson R, Reboud J, Bourquin Y, Neale SL, Zhang Y, Cooper JM (2011) Phononic crystal structures for acoustically driven microfluidic manipulations. Lab Chip 11(2):323–328

    Google Scholar 

  • Xia X, Yang Q, Li H, Ke M, Peng S, Qiu C, Liu Z (2017) Acoustically driven particle delivery assisted by a graded grating plate. Appl Phys Lett 111:031903

    Google Scholar 

  • Xu S, Qiu C, Ke M, Liu Z (2014) Tunable enhancement of the acoustic radiation pressure acting on a rigid wall via attaching a metamaterial slab. Europhys Lett 105(6):64004

    Google Scholar 

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239

    Google Scholar 

  • Zheng LY, Wu Y, Ni X, Chen ZG, Lu MH, Chen YF (2014) Acoustic cloaking by a near-zero-index phononic crystal. Appl Phys Lett 104:161904

    Google Scholar 

  • Zhou T, Deng Y, Zhao H, Zhang X, Shi L, Joo SW (2018) The mechanism of size-based particle separation by dielectrophoresis in the viscoelastic flows. J Fluids Eng 140:091302

    Google Scholar 

Download references

Acknowledgements

This work was supported by the following funding organizations in China: The Natural Science Foundation of China (Grant no. 11904117, 51702113), the Industry-University-Research Collaboration Project of Jiangsu Province (Grant no. BY2019058), the Qing Lan Project of the Higher Educations of Jiangsu Province of China (2018), and the Scientific Research Foundation of Huaiyin Institute of Technology (Grant no. Z301B19529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Liu, P., Guo, X. et al. 2D acoustofluidic patterns in an ultrasonic chamber modulated by phononic crystal structures. Microfluid Nanofluid 24, 91 (2020). https://doi.org/10.1007/s10404-020-02394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-020-02394-8

Keywords

Navigation