当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Condensation Behavior of Magnesium Metal in Argon Gas
Metallurgical and Materials Transactions B ( IF 3 ) Pub Date : 2020-10-22 , DOI: 10.1007/s11663-020-01993-8
Ji-Biao Han , Ting-An Zhang , Da-Xue Fu , Jun-Hua Guo , Zong-Hui Ji , Zhi-He Dou

The condensation behavior of magnesium vapor in argon was studied. Thermodynamic analysis showed that magnesium vapor condensation was controlled by partial pressure and temperature and that temperature was the main factor affecting condensation. When the actual magnesium vapor partial pressure was < 371.2 Pa, the magnesium vapor changed directly from gas to solid; when the vapor pressure was > 371.2 Pa, the magnesium vapor changed from gas to liquid and then to solid. Experimental results showed that droplet magnesium with particle sizes of 0.15 to 1.04 mm, transitional condensed magnesium with particle sizes of 2 to 25 μ m and powdered magnesium with particle sizes of 0.5 to 8 μ m were obtained at 1000 °C and 0.2 m 3 /h. This phenomenon occurred as the temperature in the constant temperature zone increased from 1000 °C to 1200 °C. The initial temperature of the droplet condensation zone increased from 618 °C to 776 °C; the initial temperature of transitional condensation zone was 492 °C to 552 °C and the initial temperature of the powder condensation zone 420 °C to 458 °C. When the argon flow rate increased from 0.1 to 0.4 m 3 /h, droplet magnesium decreased from 52.68 to 11.32 pct and the powder magnesium increased from 24.06 to 57.98 pct. Controlling the temperature and gas flow, different magnesium crystalline microstructures were obtained, which provided a means for magnesium vapor condensation in a continuous magnesium extraction process.

中文翻译:

镁金属在氩气中的冷凝行为

研究了镁蒸气在氩气中的冷凝行为。热力学分析表明,镁蒸气冷凝受分压和温度控制,温度是影响冷凝的主要因素。当实际镁蒸气分压<371.2Pa时,镁蒸气直接由气态变为固态;当蒸气压> 371.2 Pa时,镁蒸气由气态变为液态,再变为固态。实验结果表明,在1000℃和0.2m 3 / 下得到粒径为0.15~1.04 mm的液滴镁、粒径为2~25 μ m的过渡凝聚镁和粒径为0.5~8 μ m的粉状镁。 H。这种现象随着恒温区的温度从1000℃升高到1200℃而发生。液滴凝结区的初始温度从618℃升高到776℃;过渡冷凝区的初始温度为492°C至552°C,粉末冷凝区的初始温度为420°C至458°C。当氩气流量从0.1增加到0.4m 3 /h时,液滴镁从52.68%减少到11.32%,粉末镁从24.06%增加到57.98%。控制温度和气体流量,获得不同的镁晶体微观结构,这为连续提取镁过程中的镁蒸气冷凝提供了手段。过渡冷凝区的初始温度为492°C至552°C,粉末冷凝区的初始温度为420°C至458°C。当氩气流量从0.1增加到0.4m 3 /h时,液滴镁从52.68%减少到11.32%,粉末镁从24.06%增加到57.98%。控制温度和气体流量,获得不同的镁晶体微观结构,这为连续提取镁过程中的镁蒸气冷凝提供了手段。过渡冷凝区的初始温度为492°C至552°C,粉末冷凝区的初始温度为420°C至458°C。当氩气流量从0.1增加到0.4m 3 /h时,液滴镁从52.68%减少到11.32%,粉末镁从24.06%增加到57.98%。控制温度和气体流量,获得不同的镁晶体微观结构,这为连续提取镁过程中的镁蒸气冷凝提供了手段。
更新日期:2020-10-22
down
wechat
bug