Skip to main content
Log in

Condensation Behavior of Magnesium Metal in Argon Gas

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The condensation behavior of magnesium vapor in argon was studied. Thermodynamic analysis showed that magnesium vapor condensation was controlled by partial pressure and temperature and that temperature was the main factor affecting condensation. When the actual magnesium vapor partial pressure was < 371.2 Pa, the magnesium vapor changed directly from gas to solid; when the vapor pressure was > 371.2 Pa, the magnesium vapor changed from gas to liquid and then to solid. Experimental results showed that droplet magnesium with particle sizes of 0.15 to 1.04 mm, transitional condensed magnesium with particle sizes of 2 to 25 μm and powdered magnesium with particle sizes of 0.5 to 8 μm were obtained at 1000 °C and 0.2 m3/h. This phenomenon occurred as the temperature in the constant temperature zone increased from 1000 °C to 1200 °C. The initial temperature of the droplet condensation zone increased from 618 °C to 776 °C; the initial temperature of transitional condensation zone was 492 °C to 552 °C and the initial temperature of the powder condensation zone 420 °C to 458 °C. When the argon flow rate increased from 0.1 to 0.4 m3/h, droplet magnesium decreased from 52.68 to 11.32 pct and the powder magnesium increased from 24.06 to 57.98 pct. Controlling the temperature and gas flow, different magnesium crystalline microstructures were obtained, which provided a means for magnesium vapor condensation in a continuous magnesium extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Hanko: J. JOM, 2002, vol. 54, pp. 51-54.

    Article  CAS  Google Scholar 

  2. R.T. Li, W. Pan, Masamichisano, and J.Q. Li: J. Thermochim. Acta, 2002, vol. 390, pp. 145–51.

  3. Z. Zhu, L.W. Zhang, and S.D. Gu: J. Chin. J. Nonferr. Metals., 2012, vol. 22, pp. 1063-1067.

    CAS  Google Scholar 

  4. Halmann, F., and Steubfeld: J. Stress. Inter. J. Biolo. Stress., 2008, vol. 11, pp. 198–209.

  5. C. Wang, C. Zhang, S.J. Zhang, and L.J. Guo: J. Int. J. Miner. Process., 2015, vol. 142, pp. 147-153.

    Article  CAS  Google Scholar 

  6. Y. Wada, S. Fujii, E. Suzuki, M.M. Maitani, S. Tsubaki, S. Chonan, M. Fukui, and N. Inazu: J. Sci. Rep., 2017, vol. 7, pp. 46512.

    Article  CAS  Google Scholar 

  7. F. Gao, Z.R. Nie, Z.H. Wang, X.Z. Gong, and T.Y. Zuo: J. T. Nonferr. Metal. Soc., 2008, vol. 18, pp. 749-754.

    Article  CAS  Google Scholar 

  8. C. Zhang, C. Wang, S.J. Zhang, and L.J. Guo: J. Ind. Eng. Chem. Res., 2015, vol. 54, pp. 8883-8892.

    Article  CAS  Google Scholar 

  9. D.X. Fu, N.X. Feng, and Y.W. Wang: J. Bull. Korean. Chem. Soc., 2012, vol. 33, pp. 2483-2488.

    Article  CAS  Google Scholar 

  10. D.X. Fu, Y.W. Wang,J.P. Peng, Y.D. Di, S.H. Tao, and N.X. Feng: J. T. Nonferr. Metal. Soc., 2014, vol. 24, pp. 2677-2686.

    Article  CAS  Google Scholar 

  11. D.X. Fu, T.A. Zhang, L.K. Guan, Z.H. Dou, and M. Wen: J. JOM, 2016, vol. 68, pp. 3208-3213.

    Article  CAS  Google Scholar 

  12. D.X. Fu, N.X. Feng, Y.X. Wang, J.P. Peng, and Y.Z. Di: J. T. Nonferr. Metal. Soc., 2014, vol. 24, pp. 839-847.

    Article  CAS  Google Scholar 

  13. D.X. Fu, T.A. Zhang, Z.H. Dou, and L.K. Guan: J. Can. Metall. Q., 2017, vol. 56, pp. 418-425.

    Article  CAS  Google Scholar 

  14. M. Abdellatif: J. J. S. Afr. I. Min.Metall., 2011, vol. 111, pp. 393-399.

    CAS  Google Scholar 

  15. A. Schoukens, M. Abdellatif, M. Freeman: J. J. S. Afr. I. Min.Metall.,2006, vol. 106, pp. 25-29.

    CAS  Google Scholar 

  16. W. Wulandari, G.A. Brooks, M.A. Rhamdhani, and B.J. Monaghan: J. Can. Metall. Q., 2014, vol. 53, pp. 17-25.

    Article  CAS  Google Scholar 

  17. I.M. Morsi, K.A. Barawy, M.B. Morsi, and S.R. Abdel-gawad: J. Can. Metall. Q., 2002, vol. 41, pp. 15-28.

    Article  CAS  Google Scholar 

  18. L.M. Pigeon: US Patent, 1958, US2837328.

  19. C.H. Allen: US Patent, 1950, US2514275.

  20. A. Schoukens, T.R. Curr, M. Abdellatif, and R.M. Whyte: US Patent, 2010, US7641711.

  21. J.R. Powers, and R.M. Steinberg: US Patent, 1999, US5976354.

  22. U. Pal, and S.C. Britten: US Patent, 2001, US6299742.

  23. D.E. Woolley, and U. Pal: J. Magn. Tech., 2000, pp. 35–36

  24. U. Pal, D.E. Woolley, and G.B. Kenney: J. JOM, vol. 53, pp. 32–35

  25. A. Krishnan, U. Pal, and X.G. Lu: J. J. Metall. Mater. Trans. B, 2005, vol. 36, pp. 463-473.

    Article  Google Scholar 

  26. T.A. Zhang, Z.H. Dou, Z.M. Zhang, Y. Liu, G.Z. Lyu, J.C. He: CN Patent, 2014, CN201410345802.

  27. Y. Tian, B.Q. Xu, C.B. Yang, B. Yang, T. Qu, H.X. Liu, Y.N. Dai, and D.C. Liu: J. Metall. Mater. Trans. B, 2014, vol. 45, pp.1936-1941.

    Article  CAS  Google Scholar 

  28. Y. Tian, T. Qu, B. Yang, Y.N. Dai, B.Q. Xu, and S. Geng: J. J. Metall. Mater. Trans. B, 2012, vol. 43, pp. 657-661.

    Article  CAS  Google Scholar 

  29. H. Liu, Y. Tian, B. Yang, D.C. Liu, B.Q. Xu, T. Qu, and Y.N. Dai: J. Chin. J. Vacuu. Sci. Tech., 2015, vol. 35, pp. 867-871.

    CAS  Google Scholar 

  30. Y. Tian, B.Q. Xu, C.B. Yang, B. Yang, D.C. Liu, T. Qu, and Y.N. Dai: J. Mag. Tech., 2016, pp. 61–66.

  31. C.B. Yang, Y. Tian, T. Qu, B. Yang, B.Q. Xu, and Y.N. Dai: J. T. Nonferrous Metal. Soc., 2014, vol. 24, pp. 561-569.

    Article  CAS  Google Scholar 

  32. C.B. Yang, Y. Tian, T. Qu, B. Yang, B.Q. Xu, and Y.N. Dai: J. J. Magn. Alloy., 2014, vol. 2, pp. 50-58.

    Article  CAS  Google Scholar 

  33. N. Xiong, Y. Tian, B. Yang, B.Q. Xu, D.C. Liu, and Y.N. Dai: J. Vacuum, 2018, vol. 156, pp. 463-468.

    Article  CAS  Google Scholar 

  34. N. Xiong, Y. Tian, B. Yang, B.Q. Xu, T. Dai, and Y.N. Dai: J. Vacuum, 2019, vol. 160, pp. 213-225.

    Article  CAS  Google Scholar 

  35. G. Caeuso, and D.V. Di-maio: J. Int. J. Heat Mass Tran., 2014, vol. 68, pp. 401-414.

    Article  Google Scholar 

  36. Z. Yin, Y.L. Zhan, B. Sunden, Q.W. Wang, and M. Zeng: J. Numer. Heat Tr. A-Appl., 2015, vol. 68, pp. 958-977.

    Article  CAS  Google Scholar 

  37. P.K. Sarma, M.A. Reddy, A.E. Bergles, and S. Kakac: J. Int. J. Heat Mass Tran., 2001, vol. 44, pp. 3233-3240.

    Article  CAS  Google Scholar 

  38. X.M. Wang, and H.J. Chang: J. Nucl. Eng. Des., 2016, vol. 305, pp. 303-313.

    Article  CAS  Google Scholar 

  39. W.M. Haynes: CRC Handbook of Chemistry and Physics, CRC Press, Florida, 2017, pp. 4-121.

    Google Scholar 

  40. C.B. Alcock, V.P. Itkin, and M.K. Horriggan: J. Can. Metall. Q., 1984, vol. 23, pp.309-313.

    Article  CAS  Google Scholar 

  41. Y.N. Dai, and B. Yang: Vacuum Metallurgy of Nonferrous Metals, 1st ed., Metallurgical Industry Press, Beijing, 2000, pp. 34-37.

    Google Scholar 

  42. I. Hischier, B.A. Chubukov, M.A. Wallace, R.P. Fisher, A.W. Palumbo, S.C. Rowe, A.J. Groehn, and A.W. Weimer: J. Sol Energy, 2016, vol. 139, pp. 389-397.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants (51504058; U1508217; 51404054; 51374064), the Fundamental Research Funds for the Central Universities of China (Grant No. N162504003, N140204013) and the Fund of Liaoning S&T Project (Grant Nos. 201601003, LZ2014021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-An Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 26, 2019; accepted September 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JB., Zhang, TA., Fu, DX. et al. Condensation Behavior of Magnesium Metal in Argon Gas. Metall Mater Trans B 51, 3098–3107 (2020). https://doi.org/10.1007/s11663-020-01993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01993-8

Navigation