当前位置: X-MOL 学术Plant Cell Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato
Plant Cell Reports ( IF 5.3 ) Pub Date : 2020-10-19 , DOI: 10.1007/s00299-020-02622-z
Mil Thi Tran 1, 2 , Duong Thi Hai Doan 1 , Jihae Kim 1 , Young Jong Song 1 , Yeon Woo Sung 1 , Swati Das 1 , Eun-Jung Kim 1, 3 , Geon Hui Son 1 , Sang Hee Kim 1 , Tien Van Vu 1, 4 , Jae-Yean Kim 1, 5
Affiliation  

Key message

CRISPR/Cas9-based multiplexed editing of SlHyPRP1 resulted in precise deletions of its functional motif(s), thereby resulting in salt stress-tolerant events in cultivated tomato.

Abstract

Crop genetic improvement to address environmental stresses for sustainable food production has been in high demand, especially given the current situation of global climate changes and reduction of the global food production rate/population rate. Recently, the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based targeted mutagenesis has provided a revolutionary approach to crop improvement. The major application of CRISPR/Cas in plant genome editing has been the generation of indel mutations via error-prone nonhomologous end joining (NHEJ) repair of DNA DSBs. In this study, we examined the power of the CRISPR/Cas9-based novel approach in the precise manipulation of protein domains of tomato hybrid proline-rich protein 1 (HyPRP1), which is a negative regulator of salt stress responses. We revealed that the precise elimination of SlHyPRP1 negative-response domain(s) led to high salinity tolerance at the germination and vegetative stages in our experimental conditions. CRISPR/Cas9-based domain editing may be an efficient tool to engineer multidomain proteins of important food crops to cope with global climate changes for sustainable agriculture and future food security.



中文翻译:


基于CRISPR/Cas9的SlHyPRP1结构域精确切除以获得耐盐胁迫番茄


 关键信息


基于 CRISPR/Cas9 的 SlHyPRP1 多重编辑导致其功能基序的精确删除,从而导致栽培番茄出现耐盐胁迫事件。

 抽象的


人们迫切需要通过作物遗传改良来应对环境压力,实现可持续粮食生产,特别是考虑到当前全球气候变化和全球粮食生产率/人口率下降的情况。最近,新兴的基于成簇规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)的靶向诱变为作物改良提供了革命性的方法。 CRISPR/Cas 在植物基因组编辑中的主要应用是通过 DNA DSB 的易错非同源末端连接 (NHEJ) 修复产生插入缺失突变。在这项研究中,我们检验了基于 CRISPR/Cas9 的新方法在精确操作番茄杂合富含脯氨酸蛋白 1 (HyPRP1) 的蛋白结构域方面的功效,该蛋白是盐胁迫反应的负调节因子。我们发现,在我们的实验条件下,精确消除 SlHyPRP1 负响应结构域可导致发芽和营养阶段的高盐耐受性。基于 CRISPR/Cas9 的域编辑可能是设计重要粮食作物的多域蛋白的有效工具,以应对全球气候变化,实现可持续农业和未来粮食安全。

更新日期:2020-10-19
down
wechat
bug