当前位置: X-MOL 学术Korean J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of carbonization conditions on the microporous structure and high-pressure methane adsorption behavior of glucose-derived graphene
Korean Journal of Chemical Engineering ( IF 2.9 ) Pub Date : 2020-10-12 , DOI: 10.1007/s11814-020-0619-x
Faten Ermala Che Othman , Sadaki Samitsu , Norhaniza Yusof , Ahmad Fauzi Ismail

A simple, promising, environmentally friendly, and high yield technique to synthesize high specific surface area (SSA) and porous graphene-like materials from glucose precursor through carbonization and controlled chemical iron chloride (FeCl 3 ) activation was demonstrated. Designing this nanoporous graphene-based adsorbent with high SSA, abundant micropore volume, tunable pore size distribution, and high adsorption capacity, is crucial in order to deal with the demands of large-scale reversible natural gas storage applications. Raman spectroscopy, BET method of analysis, and N 2 adsorption/desorption measurements at 196 °C were adopted to evaluate the structural and textural properties of the resultant glucose derived-graphene (gluGr) samples. The effects of different carbonization conditions, such as the inert environments (argon, helium, and argon) and temperatures (700, 800, 900, and 1,000 °C), have been studied. A glucose-derived graphene carbonized under nitrogen environment at 700 °C (NGr700) with highly interconnected network of micropores and mesopores and large SSA (767 m 2 /g) exhibited excellent methane (CH 4 ) storage property with exceptionally high adsorption capacity, superior to other glucose-derived graphene (gluGr) samples. A maximum volumetric capacity up to 42.08 cm 3 /g was obtained from CH 4 adsorption isotherm at 25 °C and 35 bar. Note that the adsorption performance of the CH 4 is highly associated with the SSA and microporosity of the gluGr samples, especially NGr700 that was successfully synthesized by FeCl 3 activation under N 2 environment.

中文翻译:

碳化条件对葡萄糖衍生石墨烯微孔结构及高压甲烷吸附行为的影响

展示了一种简单、有前景、环境友好且产量高的技术,可通过碳化和受控化学氯化铁 (FeCl 3 ) 活化从葡萄糖前体合成高比表面积 (SSA) 和多孔类石墨烯材料。设计这种具有高 SSA、丰富微孔体积、可调孔径分布和高吸附容量的纳米多孔石墨烯基吸附剂,对于满足大规模可逆天然气储存应用的需求至关重要。采用拉曼光谱、BET 分析方法和 196 °C 下的 N 2 吸附/解吸测量来评估所得葡萄糖衍生石墨烯 (gluGr) 样品的结构和质地特性。不同碳化条件的影响,例如惰性环境(氩气、氦气、和氩气)和温度(700、800、900 和 1,000 °C)。葡萄糖衍生的石墨烯在 700 °C 氮环境下碳化(NGr700),具有高度互连的微孔和中孔网络和大 SSA(767 m 2 /g),表现出优异的甲烷(CH 4 )储存性能,具有极高的吸附能力,优越的到其他葡萄糖衍生的石墨烯 (gluGr) 样品。从 CH 4 吸附等温线在 25 °C 和 35 bar 下获得了高达 42.08 cm 3 /g 的最大体积容量。请注意,CH 4 的吸附性能与gluGr 样品的SSA 和微孔率高度相关,尤其是在N 2 环境下通过FeCl 3 活化成功合成的NGr700。葡萄糖衍生的石墨烯在 700 °C 氮环境下碳化(NGr700),具有高度互连的微孔和中孔网络和大 SSA(767 m 2 /g),表现出优异的甲烷(CH 4 )储存性能,具有极高的吸附能力,优越的到其他葡萄糖衍生的石墨烯 (gluGr) 样品。从 CH 4 吸附等温线在 25 °C 和 35 bar 获得了高达 42.08 cm 3 /g 的最大体积容量。请注意,CH 4 的吸附性能与gluGr 样品的SSA 和微孔率高度相关,尤其是在N 2 环境下通过FeCl 3 活化成功合成的NGr700。葡萄糖衍生的石墨烯在 700 °C 氮环境下碳化(NGr700),具有高度互连的微孔和中孔网络和大 SSA(767 m 2 /g),表现出优异的甲烷(CH 4 )储存性能,具有极高的吸附能力,优越的到其他葡萄糖衍生的石墨烯 (gluGr) 样品。从 CH 4 吸附等温线在 25 °C 和 35 bar 获得了高达 42.08 cm 3 /g 的最大体积容量。请注意,CH 4 的吸附性能与gluGr 样品的SSA 和微孔率高度相关,尤其是在N 2 环境下通过FeCl 3 活化成功合成的NGr700。
更新日期:2020-10-12
down
wechat
bug