Skip to main content
Log in

Effects of carbonization conditions on the microporous structure and high-pressure methane adsorption behavior of glucose-derived graphene

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A simple, promising, environmentally friendly, and high yield technique to synthesize high specific surface area (SSA) and porous graphene-like materials from glucose precursor through carbonization and controlled chemical iron chloride (FeCl3) activation was demonstrated. Designing this nanoporous graphene-based adsorbent with high SSA, abundant micropore volume, tunable pore size distribution, and high adsorption capacity, is crucial in order to deal with the demands of large-scale reversible natural gas storage applications. Raman spectroscopy, BET method of analysis, and N2 adsorption/desorption measurements at 196 °C were adopted to evaluate the structural and textural properties of the resultant glucose derived-graphene (gluGr) samples. The effects of different carbonization conditions, such as the inert environments (argon, helium, and argon) and temperatures (700, 800, 900, and 1,000 °C), have been studied. A glucose-derived graphene carbonized under nitrogen environment at 700 °C (NGr700) with highly interconnected network of micropores and mesopores and large SSA (767 m2/g) exhibited excellent methane (CH4) storage property with exceptionally high adsorption capacity, superior to other glucose-derived graphene (gluGr) samples. A maximum volumetric capacity up to 42.08 cm3/g was obtained from CH4 adsorption isotherm at 25 °C and 35 bar. Note that the adsorption performance of the CH4 is highly associated with the SSA and microporosity of the gluGr samples, especially NGr700 that was successfully synthesized by FeCl3 activation under N2 environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. M. Sang, J. Shin, K. Kim and K. J. Yu, Nanomaterials, 9, 374 (2019).

    Article  CAS  Google Scholar 

  3. A. Hassani, M. T. H. Mosavian, A. Ahmadpour and N. Farhadian, Korean J. Chem. Eng., 34, 876 (2017).

    Article  CAS  Google Scholar 

  4. S. Chowdhury and R. Balasubramaniam, Ind. Eng. Chem. Res., 55, 7906 (2016).

    Article  CAS  Google Scholar 

  5. S. A. Bhuyan, N. Uddin, M. Islam and F. A. Bipasha, Int. Nano Lett., 6, 63 (2016).

    Article  Google Scholar 

  6. S. Gadipelli and Z. X. Guo, Prog. Mater. Sci., 69, 1 (2015).

    Article  CAS  Google Scholar 

  7. T. Purkait, G. Singh, M. Singh, D. Kumar and R. S. Dey, Sci. Rep., 7, 1 (2017).

    Article  CAS  Google Scholar 

  8. J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry 5th Ed. W. H. Freeman and Company, New York (2002).

    Google Scholar 

  9. T. Hongo, J. Sugiyama, A. Yamazaki and A. Yamasaki, Ind. Eng. Chem. Res., 52, 2111 (2013).

    Article  CAS  Google Scholar 

  10. Y. Chen, X. Zhang, H. Zhang, X. Sun, D. Zhang and Y. Ma, RSC Adv., 2, 7727 (2012).

    Google Scholar 

  11. D. Prahas, Y. Kartika, N. Indraswati and S. Ismadji, Chem. Eng. J., 140, 32 (2008).

    Article  CAS  Google Scholar 

  12. W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chanthai and C. Ruangviriyachai, Chem. Eng. Res. Des., 89, 335 (2011).

    Article  CAS  Google Scholar 

  13. Z. Jiang, Y. Liu, X. Sun, F. Tian, F. Sun, C. Liang, W. You, C. Han and C. Li, Langmuir, 19, 731 (2003).

    Article  CAS  Google Scholar 

  14. D. P. Vargas, L. Giraldo and J. C. Moreno-Pirajan, Adsorption, 22, 717 (2016).

    Article  CAS  Google Scholar 

  15. T. E. Rufford, D. Hullicova-Jurcakova, Z. Zhu and G. Q. Lu, J. Mater. Res., 25, 1451 (2011).

    Article  Google Scholar 

  16. J. Sahira, A. Mandira, P. B. Prasad and P. R. Ram, Res. J. Chem. Sci, 3, 19 (2013).

    Google Scholar 

  17. Z. Xu, Z. Yuan, D. Zhang, W. Chen, Y. Huang, T. Zhang, D. Tian, H. Deng, Y. Zhou and Z. Sun, J. Cleaner Prod., 192, 453 (2018).

    Article  CAS  Google Scholar 

  18. P. Singh, J. Bahadur and K. Pal, Graphene, 6, 61 (2017).

    Article  CAS  Google Scholar 

  19. X. H. Li, S. Kurasch, U. Kaiser and M. Antonietti, Angew. Chem. Int. Ed., 51, 9689 (2012).

    Article  CAS  Google Scholar 

  20. M. Danish, R. Hashim, M. N. M. Ibrahim and O. Sulaiman, J. Anal. Appl. Pyrol., 104, 418 (2013).

    Article  CAS  Google Scholar 

  21. B. Zhang, J. Song, G. Yang and B. Han, Chem. Sci., 5, 4656 (2014).

    Article  CAS  Google Scholar 

  22. J. Jagiello and M. Thommes, Carbon, 42, 1227 (2004).

    Article  CAS  Google Scholar 

  23. N. Indayaningsih, F. Destyorini, R. I. Purawiardi, D. R. Insiyanda and H. Widodo, IOP Conf. Ser.: J. Phys. Conf. Ser., 817, 1 (2016).

    Google Scholar 

  24. C. Song, T. Wang, J. S. Qiu, Y. M. Cao and T. Cai, J. Porous Mater., 15, 1 (2008).

    Article  CAS  Google Scholar 

  25. E. J. Amieva, J. Lopez-Barroso, A. L. Martinez-Hernandez and C. Velasco-Santos, Graphene-based materials functionalization with natural polymeric biomolecules, INTECH Open Access, United Kingdom (2016).

    Google Scholar 

  26. J. C. Groen, L. A. A. Peffer and J. Perez-Ramirez, Micropor. Mesopor. Mater., 60, 1 (2003).

    Article  CAS  Google Scholar 

  27. S. Wang, Q. Feng, M. Zha, F. Javadpour and Q. Hu, Energy Fuel, 32, 169 (2018).

    Article  CAS  Google Scholar 

  28. A. Kaniyoor and S. Ramaprabhu, AIP Adv., 2, 1 (2012).

    Article  Google Scholar 

  29. E. I. Biru and H. Iovu, Graphene nanocomposites studied by Raman spectroscopy, INTECH Open Access, United Kingdom (2018).

    Book  Google Scholar 

  30. J. B. Wu, M. L. Lin, X. Cong, H. N. Liu and P. H. Tan, Chem. Soc. Rev., 47, 1822 (2018).

    Article  CAS  Google Scholar 

  31. Q. A. Khan, A. Shaur, T. A. Khan, Y. F. Joya and M. S. Awan, Cogent Chem., 3, 1 (2017).

    Article  Google Scholar 

  32. S. Himeno, T. Komatsu and S. Fujita, J. Chem. Eng. Data, 50, 369 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Malaysian Ministry Education and Universiti Teknologi Malaysia under UTM-TDR grant scheme (Q.J130000.3551.06G07), CRG grant (Q.J130000.2451.08G26), Malaysia Research University Network Grant Scheme (MRUN) (R.J130000.7851.4L865), UTM award grant (R.J130000.7351.5M002), and UTM Prototype Research grant (Q.J130000.2851.00L41). One of the authors, F.E.C. Othman, would like to acknowledge the Zamalah Scholarship received from UTM and NIMS Internship Scholarship 2018 awarded by National Institute of Materials Science (NIMS), Japan. The authors would also like to acknowledge the technical and management support from Research Management Centre (RMC), Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhaniza Yusof.

Additional information

Conflict of Interest

There is no potential conflict of interest reported by the author(s).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, F.E.C., Samitsu, S., Yusof, N. et al. Effects of carbonization conditions on the microporous structure and high-pressure methane adsorption behavior of glucose-derived graphene. Korean J. Chem. Eng. 37, 2068–2074 (2020). https://doi.org/10.1007/s11814-020-0619-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0619-x

Keywords

Navigation