当前位置: X-MOL 学术Circuits Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Efficient, Ultra-Low-Power and High-Speed 4:2 Compressor with a New Full Adder Cell for Bioelectronics Applications
Circuits, Systems, and Signal Processing ( IF 1.8 ) Pub Date : 2020-06-02 , DOI: 10.1007/s00034-020-01459-x
Ayoub Sadeghi , Nabiollah Shiri , Mahmood Rafiee

Size reduction in complementary metal–oxide–semiconductor integrated circuits (ICs) is a challenge. Carbon nanotube field effect transistor (CNTFET) technology with advantages such as low power, high mobility, and ballistic transmissions is an alternative. Based on the standard 32 nm CNTFET technology, a new 23-transistor full adder cell is proposed with combining advantages of gate diffusion input and transmission gate techniques, which are low power and full swing. Owing to small number of transistors and internal nodes, the delay time and activity factor decreased to 13.5 τ . Simulations of critical parameters variations like V DD , temperature, and fan-out expose better performance of the proposed cell. Investigating the process voltage temperature with Monte Carlo simulation verified better stability, immunity, and tolerability of the cell in comparison with well-known full adder cells. Suggested full adder cell was implemented in 4:2 compressor with 9.0298 fJ of power delay product and minimum area occupation among the references. Based on real chip measurements, total die area occupation for proposed full adder and compressor is 0.505 µm 2 and 1.092 µm 2 , respectively. Proposed circuits were applied to an 8-bit subtractor for orthopantomogram image processing to detect tooth core build up and restored with dental filling in order to maintain a crown restoration. Merits of proposed circuits both in IC design and image processing make these circuits suitable choice for bioelectronics chips.

中文翻译:

具有用于生物电子应用的新型全加器单元的高效、超低功耗和高速 4:2 压缩机

减小互补金属氧化物半导体集成电路 (IC) 的尺寸是一项挑战。具有低功率、高迁移率和弹道传输等优点的碳纳米管场效应晶体管 (CNTFET) 技术是一种替代方案。基于标准的32nm CNTFET技术,提出了一种新的23晶体管全加器单元,结合了栅极扩散输入和传输门技术的低功耗和全摆幅的优点。由于晶体管和内部节点数量较少,延迟时间和活动因子降低到 13.5 τ 。对 V DD 、温度和扇出等关键参数变化的模拟揭示了所提议电池的更好性能。使用蒙特卡罗模拟研究过程电压温度证实了更好的稳定性、抗扰度、与众所周知的全加器电池相比,电池的耐受性和耐受性。建议的全加器单元在 4:2 压缩机中实现,具有 9.0298 fJ 的功率延迟积和参考文献中的最小面积占用。根据实际芯片测量,建议的全加器和压缩器的总管芯面积分别为 0.505 µm 2 和 1.092 µm 2 。建议的电路被应用于 8 位减法器,用于正畸图像处理,以检测牙核的形成,并用牙科填充物进行修复,以保持牙冠修复。所提议电路在 IC 设计和图像处理方面的优点使这些电路成为生物电子芯片的合适选择。0298 fJ 功率延迟积和参考文献中的最小面积占用。根据实际芯片测量,建议的全加器和压缩器的总管芯面积分别为 0.505 µm 2 和 1.092 µm 2 。建议的电路被应用于 8 位减法器,用于正畸图像处理,以检测牙核的形成,并用牙科填充物进行修复,以保持牙冠修复。所提议电路在 IC 设计和图像处理方面的优点使这些电路成为生物电子芯片的合适选择。0298 fJ 功率延迟积和参考文献中的最小面积占用。根据实际芯片测量,建议的全加器和压缩器的总管芯面积分别为 0.505 µm 2 和 1.092 µm 2 。建议的电路被应用于 8 位减法器,用于正畸图像处理,以检测牙核的形成,并用牙科填充物进行修复,以保持牙冠修复。所提议电路在 IC 设计和图像处理方面的优点使这些电路成为生物电子芯片的合适选择。建议的电路被应用于 8 位减法器,用于正畸图像处理,以检测牙核的形成,并用牙科填充物进行修复,以保持牙冠修复。所提议电路在 IC 设计和图像处理方面的优点使这些电路成为生物电子芯片的合适选择。建议的电路被应用于 8 位减法器,用于正畸图像处理,以检测牙核的形成,并用牙科填充物进行修复,以保持牙冠修复。所提议电路在 IC 设计和图像处理方面的优点使这些电路成为生物电子芯片的合适选择。
更新日期:2020-06-02
down
wechat
bug