当前位置: X-MOL 学术Int. J. Adv. Manuf. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design optimization of additively manufactured titanium lattice structures for biomedical implants
The International Journal of Advanced Manufacturing Technology ( IF 2.9 ) Pub Date : 2020-08-27 , DOI: 10.1007/s00170-020-05982-8
Mahmoud Ahmed El-Sayed , Khamis Essa , Mootaz Ghazy , Hany Hassanin

A key advantage of additive manufacturing (AM) is that it allows the fabrication of lattice structures for customized biomedical implants with high performance. This paper presents the use of statistical approaches in design optimization of additively manufactured titanium lattice structures for biomedical implants. Design of experiments using response surface and analysis of variance was carried out to study the effect design parameters on the properties of the AM lattice structures such as ultimate compression strength, specific compressive strength, elastic modulus, and porosity. In addition, the lattice dimensions were optimized to fabricate a diamond cellular structure with properties that match human bones. The study found that the length of a diamond-shaped unit cell strut is the most significant design parameter. In particular, the porosity of the unit cell increases as the strut length increases, while it had a significant reverse effect on the specific compressive strength, elastic modulus, and ultimate compression strength. On the other hand, increasing the orientation angle was found to reduce both the specific compressive strength and modulus of elasticity of the lattice structure. An optimized lattice structure with strut diameter of 0.84 mm, length of 3.29 mm, and orientation angle of 47° was shown to have specific compressive strength, elastic modulus, ultimate compression strength, and porosity of 37.8 kN m/kg, 1 GPa, 49.5 MPa, and 85.7%, respectively. A cellular structure with the obtained properties could be effectively applied for trabecular bone replacement surgeries.



中文翻译:

用于生物医学植入物的增材制造钛晶格结构的设计优化

增材制造(AM)的关键优势在于,它可以为定制的生物医学植入物制造高性能的晶格结构。本文介绍了统计方法在用于生物医学植入物的增材制造钛晶格结构设计优化中的使用。进行了使用响应面和方差分析的实验设计,以研究对AM晶格结构特性的影响设计参数,例如极限抗压强度,比抗压强度,弹性模量和孔隙率。另外,晶格尺寸被优化以制造具有与人的骨骼相匹配的特性的金刚石蜂窝结构。研究发现,菱形晶胞支柱的长度是最重要的设计参数。尤其是,单元孔的孔隙度随支杆长度的增加而增加,而对比抗压强度,弹性模量和极限抗压强度却具有显着的反作用。另一方面,发现增加取向角会降低晶格结构的比抗压强度和弹性模量。经优化的支杆直径为0.84 mm,长度为3.29 mm,取向角为47°的晶格结构具有37.8 kN m / kg,1 GPa,49.5的比抗压强度,弹性模量,极限抗压强度和孔隙率MPa和85.7%。具有所获得特性的细胞结构可以有效地应用于小梁骨置换手术。而对比抗压强度,弹性模量和极限抗压强度却有明显的反作用。另一方面,发现增加取向角会降低晶格结构的比抗压强度和弹性模量。经优化的支杆直径为0.84 mm,长度为3.29 mm,取向角为47°的晶格结构具有37.8 kN m / kg,1 GPa,49.5的比抗压强度,弹性模量,极限抗压强度和孔隙率MPa和85.7%。具有所获得特性的细胞结构可以有效地应用于小梁骨置换手术。而对比抗压强度,弹性模量和极限抗压强度却有明显的反作用。另一方面,发现增加取向角会降低晶格结构的比抗压强度和弹性模量。经优化的支杆直径为0.84 mm,长度为3.29 mm,取向角为47°的晶格结构具有37.8 kN m / kg,1 GPa,49.5的比抗压强度,弹性模量,极限抗压强度和孔隙率MPa和85.7%。具有所获得特性的细胞结构可以有效地应用于小梁骨置换手术。发现增加取向角会降低晶格结构的比抗压强度和弹性模量。经优化的支杆直径为0.84 mm,长度为3.29 mm,取向角为47°的晶格结构具有37.8 kN m / kg,1 GPa,49.5的比抗压强度,弹性模量,极限抗压强度和孔隙率MPa和85.7%。具有所获得特性的细胞结构可以有效地应用于小梁骨置换手术。发现增加取向角会降低晶格结构的比抗压强度和弹性模量。经优化的支杆直径为0.84 mm,长度为3.29 mm,取向角为47°的晶格结构具有37.8 kN m / kg,1 GPa,49.5的比抗压强度,弹性模量,极限抗压强度和孔隙率MPa和85.7%。具有所获得特性的细胞结构可以有效地应用于小梁骨置换手术。孔隙率分别为37.8 kN m / kg,1 GPa,49.5 MPa和85.7%。具有所获得特性的细胞结构可以有效地应用于小梁骨置换手术。孔隙率分别为37.8 kN m / kg,1 GPa,49.5 MPa和85.7%。具有所获得特性的细胞结构可以有效地应用于小梁骨置换手术。

更新日期:2020-09-22
down
wechat
bug