Skip to main content

Advertisement

Log in

Design optimization of additively manufactured titanium lattice structures for biomedical implants

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A key advantage of additive manufacturing (AM) is that it allows the fabrication of lattice structures for customized biomedical implants with high performance. This paper presents the use of statistical approaches in design optimization of additively manufactured titanium lattice structures for biomedical implants. Design of experiments using response surface and analysis of variance was carried out to study the effect design parameters on the properties of the AM lattice structures such as ultimate compression strength, specific compressive strength, elastic modulus, and porosity. In addition, the lattice dimensions were optimized to fabricate a diamond cellular structure with properties that match human bones. The study found that the length of a diamond-shaped unit cell strut is the most significant design parameter. In particular, the porosity of the unit cell increases as the strut length increases, while it had a significant reverse effect on the specific compressive strength, elastic modulus, and ultimate compression strength. On the other hand, increasing the orientation angle was found to reduce both the specific compressive strength and modulus of elasticity of the lattice structure. An optimized lattice structure with strut diameter of 0.84 mm, length of 3.29 mm, and orientation angle of 47° was shown to have specific compressive strength, elastic modulus, ultimate compression strength, and porosity of 37.8 kN m/kg, 1 GPa, 49.5 MPa, and 85.7%, respectively. A cellular structure with the obtained properties could be effectively applied for trabecular bone replacement surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kang D, Park S, Son Y, Yeon S, Kim SH, Kim I (2019) Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process. Mater Des 175:107786

    Article  Google Scholar 

  2. Iwase A, Hori F (2020) Modification of lattice structures and mechanical properties of metallic materials by energetic ion irradiation and subsequent thermal treatments. Quantum Beam Sci 4:17

    Article  Google Scholar 

  3. Cosma C, Kessler J, Gebhardt A, Campbell I, Balc N (2020) Improving the mechanical strength of dental applications and lattice structures SLM processed. Materials 13:905

    Article  Google Scholar 

  4. Sienkiewicz J, Płatek P, Jiang F, Sun X, Rusinek A (2020) Investigations on the mechanical response of gradient lattice structures manufactured via SLM. Metals 10:213

    Article  Google Scholar 

  5. Hassanin H, Modica F, El-Sayed MA, Liu J, Essa K (2016) Manufacturing of Ti-6Al-4V micro-implantable parts using hybrid selective laser melting and micro-electrical discharge machining. Adv Eng Mater 18(9):1544–1549

  6. Maskery I, Aremu A, Parry L, Wildman R, Tuck C, Ashcroft I (2018) Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Mater Des 155:220–232

    Article  Google Scholar 

  7. Narkhede S, Sur A, Darvekar S (2019) Applications, manufacturing and thermal characteristics of micro-lattice structures: current state of the art. Eng J 23:419–431. https://doi.org/10.4186/ej.2019.23.6.419

    Article  Google Scholar 

  8. Rashed M, Ashraf M, Mines R, Hazell PJ (2016) Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications. Mater Des 95:518–533

    Article  Google Scholar 

  9. Maldovan M, Ullal CK, Jang J-H, Thomas EL (2007) Sub-micrometer scale periodic porous cellular structures: microframes prepared by holographic interference lithography. Adv Mater 19:3809–3813. https://doi.org/10.1002/adma.200700811

    Article  Google Scholar 

  10. Zhu Z, Hassanin H, Jiang K (2010) A soft moulding process for manufacture of net-shape ceramic microcomponents. Int J Adv Manuf Technol 47:147–152. https://doi.org/10.1007/s00170-008-1864-z

    Article  Google Scholar 

  11. Hassanin H, Jiang K (2011) Multiple replication of thick PDMS micropatterns using surfactants as release agents. Microelectron Eng 88:3275–3277. https://doi.org/10.1016/j.mee.2011.06.027

    Article  Google Scholar 

  12. Hassanin H, Jiang K (2009) Fabrication of Al2O3/SiC composite microcomponents using non-aqueous suspension. Adv Eng Mater 11:101–105. https://doi.org/10.1002/adem.200800158

    Article  Google Scholar 

  13. Hassanin H, Jiang K (2013) Net shape manufacturing of ceramic micro parts with tailored graded layers. J Micromech Microeng 24:015018. https://doi.org/10.1088/0960-1317/24/1/015018

    Article  Google Scholar 

  14. Hassanin H, Jiang K (2013) Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scr Mater 69:433–436. https://doi.org/10.1016/j.scriptamat.2013.05.004

    Article  Google Scholar 

  15. Hassanin H, Jiang K (2010) Functionally graded microceramic components. Microelectron Eng:87, 1610–1613. https://doi.org/10.1016/j.mee.2009.10.044

  16. Hassanin H, Jiang K (2009) Alumina composite suspension preparation for softlithography microfabrication. Microelectron Eng 86:929–932. https://doi.org/10.1016/j.mee.2008.12.067

    Article  Google Scholar 

  17. Hassanin H, Jiang K (2010) Optimized process for the fabrication of zirconia micro parts. Microelectron Eng 87:1617–1619. https://doi.org/10.1016/j.mee.2009.10.037

    Article  Google Scholar 

  18. Essa K, Modica F, Imbaby M, El-Sayed MA, ElShaer A, Jiang K, Hassanin H (2017) Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining. Int J Adv Manuf Technol 91:445–452

    Article  Google Scholar 

  19. Hassanin H, Essa K, Qiu C, Abdelhafeez Ali M, Adkins Nicholas JE, Attallah Moataz M (2017) Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing. Rapid Prototyp J 23:720–726. https://doi.org/10.1108/RPJ-02-2016-0019

    Article  Google Scholar 

  20. Qiu C, Adkins NJE, Hassanin H, Attallah MM, Essa K (2015) In-situ shelling via selective laser melting: modelling and microstructural characterisation. Mater Des 87:845–853. https://doi.org/10.1016/j.matdes.2015.08.091

    Article  Google Scholar 

  21. Hassanin H, Finet L, Cox SC, Jamshidi P, Grover LM, Shepherd DET, Addison O, Attallah MM (2018) Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels. Addit Manuf 20:144–155. https://doi.org/10.1016/j.addma.2018.01.005

    Article  Google Scholar 

  22. Klippstein H, Hassanin H, Diaz De Cerio Sanchez A, Zweiri Y, Seneviratne L (2018) Additive manufacturing of porous structures for unmanned aerial vehicles applications. Adv Eng Mater 20:1800290. https://doi.org/10.1002/adem.201800290

    Article  Google Scholar 

  23. Sabouri A, Yetisen AK, Sadigzade R, Hassanin H, Essa K, Butt H (2017) Three-dimensional microstructured lattices for oil sensing. Energy Fuel 31:2524–2529. https://doi.org/10.1021/acs.energyfuels.6b02850

    Article  Google Scholar 

  24. Klippstein H, Diaz De Cerio Sanchez A, Hassanin H, Zweiri Y, Seneviratne L (2018) Fused deposition modeling for unmanned aerial vehicles (UAVs): a review. Adv Eng Mater 20:1700552. https://doi.org/10.1002/adem.201700552

    Article  Google Scholar 

  25. Galatas A, Hassanin H, Zweiri Y, Seneviratne L (2018) Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers (Basel) 10:1262

    Article  Google Scholar 

  26. Tan C, Li S, Essa K, Jamshidi P, Zhou K, Ma W, Attallah MM (2019) Laser powder bed fusion of Ti-rich TiNi lattice structures: process optimisation, geometrical integrity, and phase transformations. Int J Mach Tools Manuf 141:19–29. https://doi.org/10.1016/j.ijmachtools.2019.04.002

    Article  Google Scholar 

  27. Hassanin H, Abena A, Elsayed MA, Essa K (2020) 4D printing of NiTi auxetic structure with improved ballistic performance. Micromachines 11:745

    Article  Google Scholar 

  28. Penchev P, Bhaduri D, Carter L, Mehmeti A, Essa K, Dimov S, Adkins NJE, Maillol N, Bajolet J, Maurath J, Jurdeczka U (2019) System-level integration tools for laser-based powder bed fusion enabled process chains. J Manuf Syst 50:87–102. https://doi.org/10.1016/j.jmsy.2018.12.003

    Article  Google Scholar 

  29. Li Y, Feng Z, Hao L, Huang L, Xin C, Wang Y, Bilotti E, Essa K, Zhang H, Li Z, Yan F, Peijs T (2020) A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Adv Mater Technol 5:1900981. https://doi.org/10.1002/admt.201900981

    Article  Google Scholar 

  30. Li Y, Feng Z, Huang L, Essa K, Bilotti E, Zhang H, Peijs T, Hao L (2019) Additive manufacturing high performance graphene-based composites: a review. Compos A Appl Sci Manuf 124:105483. https://doi.org/10.1016/j.compositesa.2019.105483

    Article  Google Scholar 

  31. Rehme O, Emmelmann C (2006) Rapid manufacturing of lattice structures with selective laser melting. SPIE 6107:192–203

  32. Challis VJ, Xu X, Zhang LC, Roberts AP, Grotowski JF, Sercombe TB (2014) High specific strength and stiffness structures produced using selective laser melting. Mater Des 63:783–788

    Article  Google Scholar 

  33. Elsayed M, Ghazy M, Youssef Y, Essa K (2019) Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyp J 25:433–447

    Article  Google Scholar 

  34. Hassanin H, Al-Kinani AA, ElShaer A, Polycarpou E, El-Sayed MA, Essa K (2017) Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. J Mater Chem B 5:9384–9394

    Article  Google Scholar 

  35. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    Article  Google Scholar 

  36. Sing SL, Yeong WY, Wiria FE, Tay B (2016) Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method. Exp Mech 56:735–748

    Article  Google Scholar 

  37. Brenne F, Niendorf T, Maier H (2013) Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J Mater Process Technol 213:1558–1564

    Article  Google Scholar 

  38. Salem H, Carter L, Attallah M, Salem H (2019) Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting. Mater Sci Eng A 767:138387

    Article  Google Scholar 

  39. Wauthle R, Vrancken B, Beynaerts B, Jorissen K, Schrooten J, Kruth J-P, Van Humbeeck J (2015) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84

    Google Scholar 

  40. Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84:1391–1411

    Google Scholar 

  41. Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Comput Integr Manuf 49:170–180

    Article  Google Scholar 

  42. Hader R, Park SH (1978) Slope-rotatable central composite designs. Technometrics 20:413–417

    Article  Google Scholar 

  43. Tamburrino F, Graziosi S, Bordegoni M (2018) The design process of additively manufactured mesoscale lattice structures: a review. J Comput Inf Sci Eng 18. https://doi.org/10.1115/1.4040131

  44. Essa K, Hassanin H, Attallah MM, Adkins NJ, Musker AJ, Roberts GT, Tenev N, Smith M (2017) Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications. Appl Catal A Gen 542:125–135. https://doi.org/10.1016/j.apcata.2017.05.019

    Article  Google Scholar 

  45. Hassanin H, Alkendi Y, Elsayed M, Essa K, Zweiri Y (2020) Controlling the properties of additively manufactured cellular structures using machine learning approaches. Adv Eng Mater 22(3):1901338

  46. Essa K, Sabouri A, Butt H, Basuny FH, Ghazy M, El-Sayed MA (2018) Laser additive manufacturing of 3D meshes for optical applications. PloS one 13:e0192389

    Article  Google Scholar 

  47. Liu F, Zhang DZ, Zhang P, Zhao M, Jafar S (2018) Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting. Materials 11:374

    Article  Google Scholar 

  48. Weißmann V, Wieding J, Hansmann H, Laufer N, Wolf A, Bader R (2016) Specific yielding of selective laser-melted Ti6Al4V open-porous scaffolds as a function of unit cell design and dimensions. Metals 6:166

    Article  Google Scholar 

  49. Choy SY, Sun C-N, Leong KF, Wei J (2017) Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: design, orientation and density. Addit Manuf 16:213–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany Hassanin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, M.A., Essa, K., Ghazy, M. et al. Design optimization of additively manufactured titanium lattice structures for biomedical implants. Int J Adv Manuf Technol 110, 2257–2268 (2020). https://doi.org/10.1007/s00170-020-05982-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05982-8

Keywords

Navigation