当前位置: X-MOL 学术Eur. Phys. J. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nuclear currents in chiral effective field theory
The European Physical Journal A ( IF 2.6 ) Pub Date : 2020-09-17 , DOI: 10.1140/epja/s10050-020-00230-9
Hermann Krebs

In this article, we review the status of the calculation of nuclear currents within chiral effective field theory. After formal discussion of the unitary transformation technique and its application to nuclear currents we give all available expressions for vector, axial-vector currents. Vector and axial-vector currents are discussed up to order Q with leading-order contribution starting at order \(Q^{-3}\). Pseudoscalar and scalar currents will be discussed up to order \(Q^0\) with leading-order contribution starting at order \(Q^{-4}\). This is a complete set of expressions in next-to-next-to-next-to-leading-order (N\(^3\)LO) analysis for nuclear scalar, pseudoscalar, vector and axial-vector current operators. Differences between vector and axial-vector currents calculated via transfer-matrix inversion and unitary transformation techniques are discussed. The importance of a consistent regularization is an additional point which is emphasized: lack of a consistent regularization of axial-vector current operators is shown to lead to a violation of the chiral symmetry in the chiral limit at order Q. For this reason a hybrid approach at order Q, discussed in various publications, is non-applicable. To respect the chiral symmetry the same regularization procedure needs to be used in the construction of nuclear forces and current operators. Although full expressions of consistently regularized current operators are not yet available, the isoscalar part of the electromagnetic charge operator up to order Q has a very simple form and can be easily regularized in a consistent way. As an application, we review our recent high accuracy calculation of the deuteron charge form factor with a quantified error estimate.



中文翻译:

手性有效场论中的核流

在本文中,我们回顾了手性有效场论中核流计算的现状。在正式讨论the变换技术及其在核流中的应用之后,我们给出了矢量,轴向矢量电流的所有可用表达式。讨论了矢量电流和轴向矢量电流,直到Q阶为止,Q阶为\(Q ^ {-3} \)。将讨论伪标量和标量电流,直到阶数\(Q ^ 0 \),并且前导阶贡献从阶数\(Q ^ {-4} \)开始。这是下一个到下一个到前导顺序的完整表达式集(N \(^ 3 \)LO)分析核标量,伪标量,矢量和轴向矢量电流算符。讨论了通过传递矩阵求逆和unit变换技术计算出的矢量电流和轴向矢量电流之间的差异。需要强调的一点是,一致正则化的重要性:轴矢量电流算子缺乏一致正则化会导致在手性极限Q处违反手性对称性。因此,Q阶的混合方法在各种出版物中讨论过的,是不适用的。为了尊重手性对称性,在构造核力量和当前运营商时需要使用相同的正则化程序。尽管尚不能提供一致的正则化电流算子的完整表达式,但电磁电荷算子的等量部分直到Q阶都具有非常简单的形式,并且可以轻松地以一致的方式进行正则化。作为一种应用,我们回顾了我们最近对氘代电荷形式因子的高精度计算以及量化的误差估计。

更新日期:2020-09-18
down
wechat
bug