当前位置: X-MOL 学术Calcif. Tissue Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Clinical Characteristics and Bone Features of Autosomal Recessive Hypophosphatemic Rickets Type 1 in Three Chinese Families: Report of Five Chinese Cases and Review of the Literature.
Calcified Tissue International ( IF 3.3 ) Pub Date : 2020-09-12 , DOI: 10.1007/s00223-020-00755-7
Xiaolin Ni 1 , Xiang Li 1 , Qi Zhang 2 , Chang Liu 1 , Yiyi Gong 3 , Ou Wang 1 , Mei Li 1 , Xiaoping Xing 1 , Yan Jiang 1 , Weibo Xia 1
Affiliation  

Autosomal recessive hypophosphatemic rickets type 1 (ARHR1) was reported to be caused by homozygous mutation of dentin matrix protein 1 (DMP1). To date, very few cases have been reported. Here, we summarized clinical, laboratory and imaging findings of ARHR1 patients in our hospital. Literature review was performed to analyze genotype–phenotype correlation. Five Chinese patients from three unrelated pedigrees presented with lower extremity deformity and short stature. Hypophosphatemia, elevated alkaline phosphatase, high intact fibroblast growth factor 23 and sclerostin were found. X-ray uncovered coexistence of osteomalacia and osteosclerosis. Although areal bone mineral density (aBMD) of axial bone measured by dual-energy X-ray absorptiometry was relatively high in all patients, volumetric BMD (vBMD) and microstructure of one adult patient’s peripheral bone detected by HR-pQCT were damaged. Mutation analyses of DMP1 revealed three homozygous mutations including two novel mutations, c.54 + 1G > C and c.94C > A (p.E32X), and a reported mutation c.184-1G > A. Genotype–phenotype correlation analysis including 30 cases (25 from literature review and 5 from our study) revealed that patients harboring mutations affecting C-terminal fragment of DMP1 presented with shorter stature (Z score of height = − 3.4 ± 1.6 vs − 1.0 ± 1.6, p = 0.001) and lower serum phosphate level (0.70 ± 0.15 vs 0.84 ± 0.16, p = 0.03) than those harboring mutations only affecting N-terminal fragment. In summary, we reported five Chinese ARHR1 patients and identified two novel DMP1 mutations. High aBMD and local osteosclerosis in axial bone with low vBMD and damaged microstructure in peripheral bone were featured. Genotype–phenotype correlation analysis confirmed the important role of C-terminal fragment of DMP1.

更新日期:2020-09-13
down
wechat
bug