Skip to main content

Advertisement

Log in

Clinical Characteristics and Bone Features of Autosomal Recessive Hypophosphatemic Rickets Type 1 in Three Chinese Families: Report of Five Chinese Cases and Review of the Literature

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Autosomal recessive hypophosphatemic rickets type 1 (ARHR1) was reported to be caused by homozygous mutation of dentin matrix protein 1 (DMP1). To date, very few cases have been reported. Here, we summarized clinical, laboratory and imaging findings of ARHR1 patients in our hospital. Literature review was performed to analyze genotype–phenotype correlation. Five Chinese patients from three unrelated pedigrees presented with lower extremity deformity and short stature. Hypophosphatemia, elevated alkaline phosphatase, high intact fibroblast growth factor 23 and sclerostin were found. X-ray uncovered coexistence of osteomalacia and osteosclerosis. Although areal bone mineral density (aBMD) of axial bone measured by dual-energy X-ray absorptiometry was relatively high in all patients, volumetric BMD (vBMD) and microstructure of one adult patient’s peripheral bone detected by HR-pQCT were damaged. Mutation analyses of DMP1 revealed three homozygous mutations including two novel mutations, c.54 + 1G > C and c.94C > A (p.E32X), and a reported mutation c.184-1G > A. Genotype–phenotype correlation analysis including 30 cases (25 from literature review and 5 from our study) revealed that patients harboring mutations affecting C-terminal fragment of DMP1 presented with shorter stature (Z score of height = − 3.4 ± 1.6 vs − 1.0 ± 1.6, p = 0.001) and lower serum phosphate level (0.70 ± 0.15 vs 0.84 ± 0.16, p = 0.03) than those harboring mutations only affecting N-terminal fragment. In summary, we reported five Chinese ARHR1 patients and identified two novel DMP1 mutations. High aBMD and local osteosclerosis in axial bone with low vBMD and damaged microstructure in peripheral bone were featured. Genotype–phenotype correlation analysis confirmed the important role of C-terminal fragment of DMP1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acar S, Demir K, Shi Y (2017) Genetic causes of rickets. J Clin Res Pediatr Endocrinol 9(Suppl 2):88–105. https://doi.org/10.4274/jcrpe.2017.S008

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wagner CA, Rubio-Aliaga I, Biber J, Hernando N (2014) Genetic diseases of renal phosphate handling. Nephrol Dial Transplant 29(4):iv45–iv54

    Article  CAS  PubMed  Google Scholar 

  3. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38(11):1310–1315. https://doi.org/10.1038/ng1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Juppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38(11):1248–1250. https://doi.org/10.1038/ng1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He G, Dahl T, Veis A, George A (2003) Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater 2(8):552–558. https://doi.org/10.1038/nmat945

    Article  CAS  PubMed  Google Scholar 

  6. Rangiani A, Cao ZG, Liu Y, Voisey Rodgers A, Jiang Y, Qin CL, Feng JQ (2012) Dentin matrix protein 1 and phosphate homeostasis are critical for postnatal pulp, dentin and enamel formation. Int J Oral Sci 4(4):189–195. https://doi.org/10.1038/ijos.2012.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steiglitz BM, Ayala M, Narayanan K, George A, Greenspan DS (2004) Bone morphogenetic protein-1/Tolloid-like proteinases process dentin matrix protein-1. J Biol Chem 279(2):980–986. https://doi.org/10.1074/jbc.M310179200

    Article  CAS  PubMed  Google Scholar 

  8. Huang B, Maciejewska I, Sun Y, Peng T, Qin D, Lu Y, Bonewald L, Butler WT, Feng J, Qin C (2008) Identification of full-length dentin matrix protein 1 in dentin and bone. Calcif Tissue Int 82(5):401–410. https://doi.org/10.1007/s00223-008-9140-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin C, Brunn JC, Cook RG, Orkiszewski RS, Malone JP, Veis A, Butler WT (2003) Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem 278(36):34700–34708

    Article  CAS  PubMed  Google Scholar 

  10. Gericke A, Qin C, Sun Y, Redfern R, Redfern D, Fujimoto Y, Taleb H, Butler WT, Boskey AL (2010) Different forms of DMP1 play distinct roles in mineralization. J Dent Res 89(4):355–359. https://doi.org/10.1177/0022034510363250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu Y, Yuan B, Qin C, Cao Z, Xie Y, Dallas SL, McKee MD, Drezner MK, Bonewald LF, Feng JQ (2011) The biological function of DMP-1 in osteocyte maturation is mediated by its 57-kDa C-terminal fragment. J Bone Miner Res 26(2):331–340. https://doi.org/10.1002/jbmr.226

    Article  CAS  PubMed  Google Scholar 

  12. Ichikawa S, Gerard-O'Riley RL, Acton D, McQueen AK, Strobel IE, Witcher PC, Feng JQ, Econs MJ (2017) A Mutation in the Dmp1 gene alters phosphate responsiveness in mice. Endocrinology 158(3):470–476. https://doi.org/10.1210/en.2016-1642

    Article  CAS  PubMed  Google Scholar 

  13. Farrow EG, Davis SI, Ward LM, Summers LJ, Bubbear JS, Keen R, Stamp TC, Baker LR, Bonewald LF, White KE (2009) Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets. Bone 44(2):287–294. https://doi.org/10.1016/j.bone.2008.10.040

    Article  CAS  PubMed  Google Scholar 

  14. Turan S, Aydin C, Bereket A, Akcay T, Guran T, Yaralioglu BA, Bastepe M, Juppner H (2010) Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone 46(2):402–409. https://doi.org/10.1016/j.bone.2009.09.016

    Article  CAS  PubMed  Google Scholar 

  15. Koshida R, Yamaguchi H, Yamasaki K, Tsuchimochi W, Yonekawa T, Nakazato M (2010) A novel nonsense mutation in the DMP1 gene in a Japanese family with autosomal recessive hypophosphatemic rickets. J Bone Miner Metab 28(5):585–590. https://doi.org/10.1007/s00774-010-0169-0

    Article  CAS  PubMed  Google Scholar 

  16. Makitie O, Pereira RC, Kaitila I, Turan S, Bastepe M, Laine T, Kroger H, Cole WG, Juppner H (2010) Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. J Bone Miner Res 25(10):2165–2174. https://doi.org/10.1002/jbmr.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beck-Nielsen SS, Brixen K, Gram J, Brusgaard K (2012) Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet 57(7):453–458. https://doi.org/10.1038/jhg.2012.56

    Article  CAS  PubMed  Google Scholar 

  18. Gannage-Yared MH, Makrythanasis P, Chouery E, Sobacchi C, Mehawej C, Santoni FA, Guipponi M, Antonarakis SE, Hamamy H, Megarbane A (2014) Exome sequencing reveals a mutation in DMP1 in a family with familial sclerosing bone dysplasia. Bone 68:142–145. https://doi.org/10.1016/j.bone.2014.08.014

    Article  CAS  PubMed  Google Scholar 

  19. Whyte MP, Amalnath SD, McAlister WH, McKee MD, Veis DJ, Huskey M, Duan S, Bijanki VN, Alur S, Mumm S (2019) Hypophosphatemic osteosclerosis, hyperostosis, and enthesopathy associated with novel homozygous mutations of DMP1 encoding dentin matrix protein 1 and SPP1 encoding osteopontin: the first digenic SIBLING protein osteopathy? Bone. https://doi.org/10.1016/j.bone.2019.115190

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stamp TC, Baker LR (1976) Recessive hypophosphataemic rickets, and possible aetiology of the 'vitamin D-resistant' syndrome. Arch Dis Child 51(5):360–365. https://doi.org/10.1136/adc.51.5.360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu J, Wang C, Zhang H, Yue H, Hu W, He J, Fu W, Zhang Z (2018) Targeted resequencing of phosphorus metabolismrelated genes in 86 patients with hypophosphatemic rickets/osteomalacia. Int J Mol Med 42(3):1603–1614. https://doi.org/10.3892/ijmm.2018.3730

    Article  CAS  PubMed  Google Scholar 

  22. Lockitch G, Halstead AC, Albersheim S, MacCallum C, Quigley G (1988) Age- and sex-specific pediatric reference intervals for biochemistry analytes as measured with the Ektachem-700 analyzer. Clin Chem 34(8):1622–1625

    Article  CAS  PubMed  Google Scholar 

  23. Walton RJ, Bijvoet OL (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2(7929):309–310. https://doi.org/10.1016/s0140-6736(75)92736-1

    Article  CAS  PubMed  Google Scholar 

  24. Di Nisio A, De Toni L, Rocca MS, Ghezzi M, Selice R, Taglialavoro G, Ferlin A, Foresta C (2018) Negative association between sclerostin and INSL3 in isolated human osteocytes and in klinefelter syndrome: new hints for testis-bone crosstalk. J Clin Endocrinol Metab 103(5):2033–2041. https://doi.org/10.1210/jc.2017-02762

    Article  PubMed  Google Scholar 

  25. Chi Y, Zhao Z, He X, Sun Y, Jiang Y, Li M, Wang O, Xing X, Sun AY, Zhou X, Meng X, Xia W (2014) A compound heterozygous mutation in SLC34A3 causes hereditary hypophosphatemic rickets with hypercalciuria in a Chinese patient. Bone 59:114–121. https://doi.org/10.1016/j.bone.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  26. Crabtree NJ, Shaw NJ, Bishop NJ, Adams JE, Mughal MZ, Arundel P, Fewtrell MS, Ahmed SF, Treadgold LA, Hogler W, Bebbington NA, Ward KA, Team AS (2017) Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults-the ALPHABET study. J Bone Miner Res 32(1):172–180. https://doi.org/10.1002/jbmr.2935

    Article  PubMed  Google Scholar 

  27. Gordon CM, Leonard MB, Zemel BS, International Society for Clinical D (2014) 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom 17(2):219–224. https://doi.org/10.1016/j.jocd.2014.01.007

    Article  PubMed  Google Scholar 

  28. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yu F, Xu Y, Hou Y, Lin Y, Jiajue R, Jiang Y, Wang O, Li M, Xing X, Zhang L, Qin L, Hsieh E, Xia W (2020) Age-, site- and sex-specific normative centile curves for HRpQCT-derived microarchitectural and bone strength parameters in a Chinese mainland population. J Bone Miner Res. https://doi.org/10.1002/jbmr.4116

    Article  PubMed  Google Scholar 

  30. Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, Quarles LD (2011) Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 25(8):2551–2562. https://doi.org/10.1096/fj.10-177816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Almaden Y, Hernandez A, Torregrosa V, Canalejo A, Sabate L, Fernandez Cruz L, Campistol JM, Torres A, Rodriguez M (1998) High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol 9(10):1845–1852

    CAS  PubMed  Google Scholar 

  32. Makitie O, Kooh SW, Sochett E (2003) Prolonged high-dose phosphate treatment: a risk factor for tertiary hyperparathyroidism in X-linked hypophosphatemic rickets. Clin Endocrinol (Oxf) 58(2):163–168. https://doi.org/10.1046/j.1365-2265.2003.01685.x

    Article  CAS  Google Scholar 

  33. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280(20):19883–19887. https://doi.org/10.1074/jbc.M413274200

    Article  CAS  PubMed  Google Scholar 

  34. Hansen S, Shanbhogue VV, Jorgensen NR, Beck-Nielsen SS (2019) Elevated Bone remodeling markers of CTX and P1NP in addition to sclerostin in patients with X-linked hypophosphatemia: a cross-sectional controlled study. Calcif Tissue Int 104(6):591–598. https://doi.org/10.1007/s00223-019-00526-z

    Article  CAS  PubMed  Google Scholar 

  35. Shore RM, Langman CB, Poznanski AK (2000) Lumbar and radial bone mineral density in children and adolescents with X-linked hypophosphatemia: evaluation with dual X-ray absorptiometry. Skeletal Radiol 29(2):90–93. https://doi.org/10.1007/s002560050016

    Article  CAS  PubMed  Google Scholar 

  36. Ren Y, Han X, Jing Y, Yuan B, Ke H, Liu M, Feng JQ (2016) Sclerostin antibody (Scl-Ab) improves osteomalacia phenotype in dentin matrix protein 1(Dmp1) knockout mice with little impact on serum levels of phosphorus and FGF23. Matrix Biol 52–54:151–161. https://doi.org/10.1016/j.matbio.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  37. Ye L, Mishina Y, Chen D, Huang H, Dallas SL, Dallas MR, Sivakumar P, Kunieda T, Tsutsui TW, Boskey A, Bonewald LF, Feng JQ (2005) Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem 280(7):6197–6203. https://doi.org/10.1074/jbc.M412911200

    Article  CAS  PubMed  Google Scholar 

  38. Seitz S, Rendenbach C, Barvencik F, Streichert T, Jeschke A, Schulze J, Amling M, Schinke T (2013) Retinol deprivation partially rescues the skeletal mineralization defects of Phex-deficient Hyp mice. Bone 53(1):231–238. https://doi.org/10.1016/j.bone.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  39. Clinkenbeard EL, Farrow EG, Summers LJ, Cass TA, Roberts JL, Bayt CA, Lahm T, Albrecht M, Allen MR, Peacock M, White KE (2014) Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J Bone Miner Res 29(2):361–369. https://doi.org/10.1002/jbmr.2049

    Article  CAS  PubMed  Google Scholar 

  40. Colares Neto GP, Pereira RM, Alvarenga JC, Takayama L, Funari MF, Martin RM (2017) Evaluation of bone mineral density and microarchitectural parameters by DXA and HR-pQCT in 37 children and adults with X-linked hypophosphatemic rickets. Osteoporos Int 28(5):1685–1692. https://doi.org/10.1007/s00198-017-3949-8

    Article  CAS  PubMed  Google Scholar 

  41. Shanbhogue VV, Hansen S, Folkestad L, Brixen K, Beck-Nielsen SS (2015) Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with hypophosphatemic rickets. J Bone Miner Res 30(1):176–183. https://doi.org/10.1002/jbmr.2310

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate our patients and healthy controls for their participation in this study. This study was supported by "13th Five-Year" National Science and Technology Major Project for New Drugs (No: 2019ZX09734001), the National Key R&D Program of China (2018YFA0800801), the National Natural Science Foundation of China (Nos. 81670714) and the CAMS Innovation Fund for Medical Sciences (No. 2016-I2M-3-003).

Funding

This study was supported by "13th Five-Year" National Science and Technology Major Project for New Drugs (No: 2019ZX09734001), the National Key R&D Program of China (2018YFA0800801), the National Natural Science Foundation of China (No. 81670714, No.81970757) and the CAMS Innovation Fund for Medical Sciences (No.2016-I2M-3-003).

Author information

Authors and Affiliations

Authors

Contributions

WB Xia designed the study. XLN, XL, QZ, CL, YJ, WBX prepared the first draft of the paper. Clinical information was collected by YJ, XLN, XL, and CL. The experiments were performed by XLN and QZ. The data were analyzed by XLN, YYG, YJ, and WBX. OW, XPX, ML, YJ, and WBX revised the manuscript. XLN, YJ, and WBX are responsible for the integrity of the data analysis. All listed authors revised the paper critically for intellectual content and approved the final version of the submitted manuscript.

Corresponding authors

Correspondence to Yan Jiang or Weibo Xia.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Patients signed informed consent regarding publishing their data and photographs.

Availability of Data and Material

All data generated or analyzed during this study are included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 11586 kb)

Supplementary file2 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Li, X., Zhang, Q. et al. Clinical Characteristics and Bone Features of Autosomal Recessive Hypophosphatemic Rickets Type 1 in Three Chinese Families: Report of Five Chinese Cases and Review of the Literature. Calcif Tissue Int 107, 636–648 (2020). https://doi.org/10.1007/s00223-020-00755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00755-7

Keywords

Navigation