当前位置: X-MOL 学术Microchim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Signal-off photoelectrochemical determination of miRNA-21 using aptamer-modified In2O3@Cu2MoS4 nanocomposite
Microchimica Acta ( IF 5.3 ) Pub Date : 2020-09-12 , DOI: 10.1007/s00604-020-04540-z
Ling Dan Yu 1 , Yu Xia Wen 1 , Xing Yue Zhang 1 , Nian Bing Li 1 , Hong Qun Luo 1
Affiliation  

In2O3@Cu2MoS4 nanocomposite with superior photoelectrochemical (PEC) performance is used for the first time as a photoactivity material, and a signal-off PEC biosensing platform for miRNA detection has been successfully constructed. Firstly, the Cu2MoS4 nanosheets are synthesized by a hydrothermal method, and then, the homogeneous In2O3 nanoparticles (In2O3 NPs) are synthesized by calcination in the air. The In2O3@Cu2MoS4 nanocomposite is constructed with the Cu2MoS4 nanosheets as matrix and In2O3 NPs as sensitizer through a layer-by-layer assembly strategy. The nanocomposite with a tight interface and the matched band structure restrains the electron-hole pair recombination. Under visible light (400–700 nm), the nanocomposite exhibits a strong initial signal. With the catalyzed hairpin assembly, dozens of PbS quantum dots (QDs) are introduced on the surface of an electrode, significantly reducing the photocurrent of n-type In2O3@Cu2MoS4. Since PbS QDs can compete with the nanocomposite for light energy and electron donors, the signal decreased. Under optimal conditions, the biosensor manifests a broad linear range (1 fM–1 nM) and a low detection limit of about 0.57 fM, at a working potential of 0 V (vs. Ag/AgCl). The recovery of spiked human serum is between 94.0 and 102%, and the relative standard deviation (RSD) is between 1.3 and 2.7%. Therefore, the as-fabricated biosensor exhibits a potential for the determination of miRNA-21 in practical applications. Graphical abstract The In2O3@Cu2MoS4 nanocomposite owns a strong anode photocurrent signal, which can be used as a photoactive material to construct a “signal-off” biosensor for the detection of miRNA in non-enzymatically catalyzed hairpin assembly (CHA) reaction. The In2O3@Cu2MoS4 nanocomposite owns a strong anode photocurrent signal, which can be used as a photoactive material to construct a “signal-off” biosensor for the detection of miRNA in non-enzymatically catalyzed hairpin assembly (CHA) reaction.

中文翻译:

使用适体修饰的 In2O3@Cu2MoS4 纳米复合材料对 miRNA-21 进行信号关闭光电化学测定

首次将具有优异光电化学(PEC)性能的 In2O3@Cu2MoS4 纳米复合材料用作光活性材料,并成功构建了用于 miRNA 检测的 Signal-off PEC 生物传感平台。首先通过水热法合成Cu2MoS4纳米片,然后在空气中煅烧合成均匀的In2O3纳米颗粒(In2O3NPs)。In2O3@Cu2MoS4纳米复合材料以Cu2MoS4纳米片为基体,In2O3纳米颗粒为敏化剂,通过逐层组装策略构建而成。具有紧密界面和匹配能带结构的纳米复合材料抑制了电子-空穴对复合。在可见光(400-700 nm)下,纳米复合材料表现出强烈的初始信号。通过催化发夹组件,在电极表面引入了数十个 PbS 量子点 (QD),显着降低了 n 型 In2O3@Cu2MoS4 的光电流。由于 PbS QD 可以与纳米复合材料竞争光能和电子供体,因此信号降低。在最佳条件下,生物传感器在 0 V(相对于 Ag/AgCl)的工作电位下表现出较宽的线性范围 (1 fM–1 nM) 和约 0.57 fM 的低检测限。加标人血清的回收率在 94.0% 到 102% 之间,相对标准偏差 (RSD) 在 1.3% 到 2.7% 之间。因此,所制造的生物传感器在实际应用中表现出测定 miRNA-21 的潜力。图形摘要 In2O3@Cu2MoS4 纳米复合材料具有很强的阳极光电流信号,可用作光敏材料构建“信号关闭”生物传感器,用于检测非酶催化发夹组装 (CHA) 反应中的 miRNA。In2O3@Cu2MoS4纳米复合材料具有很强的阳极光电流信号,可用作光敏材料构建“信号关闭”生物传感器,用于检测非酶催化发夹组装(CHA)反应中的miRNA。
更新日期:2020-09-12
down
wechat
bug