当前位置: X-MOL 学术Microchim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide
Microchimica Acta ( IF 5.3 ) Pub Date : 2020-09-11 , DOI: 10.1007/s00604-020-04542-x
Aroonsri Ngamaroonchote 1 , Yanisa Sanguansap 1 , Tuksadon Wutikhun 1 , Kullavadee Karn-Orachai 1
Affiliation  

The development of highly sensitive and highly selective sensors for non-enzymatic glucose and hydrogen peroxide (H2O2) detection using gold–copper alloy nanoparticles (AuCu alloy NPs) is reported. The AuCu NPs are nanostructures with branches and can be used as an electrochemical catalyst. Series of AuCu alloy NPs with various metal ratios are synthesized through a coreduction reaction. The morphology of AuCu alloy NPs is altered from highly branched structures (nanourchin, nanobramble, nanostar, nanocrystal) to a spherical shape by increasing Au content in the synthesis reaction. Cu-rich AuCu nanobramble and Au-rich AuCu nanostar exhibit selective electrocatalysis behaviors toward electro-oxidation of glucose and electroreduction of H2O2, respectively. The AuCu nanobramble–based sensor holds great potential in glucose detection with a linear working range of 0.25 to 10 mM. The sensor possesses a sensitivity of 339.35 μA mM−1 cm−2, a limit of detection (LOD) of 16.62 μM, which is an acceptable selectivity and good stability. In addition, the AuCu nanostar–based sensor shows excellent electrochemical responses toward H2O2 reduction with good selectivity, reproducibility, and a short response time of about 2–3 s. The linear range for H2O2 determination is 0.05 to 10 mM, with LOD and sensitivity of 10.93 μM and 133.74 μA mM−1 cm−2, respectively. The good sensing performance is a result of the synergistic surface structure and atomic composition effects, which leads AuCu alloys to be a promising nanocatalyst for sensing both glucose and H2O2. Graphical abstract Schematic illustration presents the construction of gold–copper alloy nanoparticles (AuCu alloy NPs) on the surface of screen-printed carbon electrode (SPCE). The highly branched nanostructures of AuCu alloys with different surface structure and metal ratios give selective electrocatalysis behaviors. Cu-rich AuCu nanobramble–based sensor reveals prominent electrocatalytic activity for glucose detection. Au-rich AuCu nanostar–based sensor provides good electrochemical response for H2O2 detection. Schematic illustration presents the construction of gold–copper alloy nanoparticles (AuCu alloy NPs) on the surface of screen-printed carbon electrode (SPCE). The highly branched nanostructures of AuCu alloys with different surface structure and metal ratios give selective electrocatalysis behaviors. Cu-rich AuCu nanobramble–based sensor reveals prominent electrocatalytic activity for glucose detection. Au-rich AuCu nanostar–based sensor provides good electrochemical response for H2O2 detection.

中文翻译:

用于非酶促特异性检测葡萄糖和过氧化氢的高度支化金-铜纳米结构

报道了使用金铜合金纳米颗粒(AuCu 合金纳米颗粒)开发用于非酶葡萄糖和过氧化氢 (H2O2) 检测的高灵敏度和高选择性传感器。AuCu NPs 是具有分支的纳米结构,可用作电化学催化剂。通过共还原反应合成了一系列具有各种金属比的 AuCu 合金纳米颗粒。通过增加合成反应中的 Au 含量,AuCu 合金 NPs 的形态从高度支化的结构(纳米浆果、纳米荆棘、纳米星、纳米晶体)改变为球形。富铜 AuCu 纳米荆棘和富 AuCu 纳米星分别表现出对葡萄糖电氧化和 H2O2 电还原的选择性电催化行为。基于 AuCu 纳米荆棘的传感器在葡萄糖检测方面具有巨大潜力,线性工作范围为 0.25 至 10 mM。该传感器的灵敏度为 339.35 μA mM-1 cm-2,检测限 (LOD) 为 16.62 μM,具有可接受的选择性和良好的稳定性。此外,基于 AuCu 纳米星的传感器对 H2O2 还原表现出优异的电化学响应,具有良好的选择性、重现性和约 2-3 秒的短响应时间。H2O2 测定的线性范围为 0.05 至 10 mM,LOD 和灵敏度分别为 10.93 μM 和 133.74 μA mM-1 cm-2。良好的传感性能是协同表面结构和原子组成效应的结果,这使 AuCu 合金成为一种有前途的纳米催化剂,用于传感葡萄糖和 H2O2。图形摘要示意图显示了在丝网印刷碳电极 (SPCE) 表面上构建金铜合金纳米粒子(AuCu 合金纳米粒子)。具有不同表面结构和金属比例的 AuCu 合金的高度支化纳米结构提供了选择性的电催化行为。基于富铜 AuCu 纳米荆棘的传感器显示出显着的葡萄糖检测电催化活性。基于富金 AuCu 纳米星的传感器为 H2O2 检测提供了良好的电化学响应。示意图显示了在丝网印刷碳电极 (SPCE) 表面上构建金铜合金纳米粒子(AuCu 合金纳米粒子)。具有不同表面结构和金属比例的 AuCu 合金的高度支化纳米结构提供了选择性的电催化行为。基于富铜 AuCu 纳米荆棘的传感器显示出显着的葡萄糖检测电催化活性。基于富金 AuCu 纳米星的传感器为 H2O2 检测提供了良好的电化学响应。
更新日期:2020-09-11
down
wechat
bug