Skip to main content
Log in

Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The development of highly sensitive and highly selective sensors for non-enzymatic glucose and hydrogen peroxide (H2O2) detection using gold–copper alloy nanoparticles (AuCu alloy NPs) is reported. The AuCu NPs are nanostructures with branches and can be used as an electrochemical catalyst. Series of AuCu alloy NPs with various metal ratios are synthesized through a coreduction reaction. The morphology of AuCu alloy NPs is altered from highly branched structures (nanourchin, nanobramble, nanostar, nanocrystal) to a spherical shape by increasing Au content in the synthesis reaction. Cu-rich AuCu nanobramble and Au-rich AuCu nanostar exhibit selective electrocatalysis behaviors toward electro-oxidation of glucose and electroreduction of H2O2, respectively. The AuCu nanobramble–based sensor holds great potential in glucose detection with a linear working range of 0.25 to 10 mM. The sensor possesses a sensitivity of 339.35 μA mM−1 cm−2, a limit of detection (LOD) of 16.62 μM, which is an acceptable selectivity and good stability. In addition, the AuCu nanostar–based sensor shows excellent electrochemical responses toward H2O2 reduction with good selectivity, reproducibility, and a short response time of about 2–3 s. The linear range for H2O2 determination is 0.05 to 10 mM, with LOD and sensitivity of 10.93 μM and 133.74 μA mM−1 cm−2, respectively. The good sensing performance is a result of the synergistic surface structure and atomic composition effects, which leads AuCu alloys to be a promising nanocatalyst for sensing both glucose and H2O2.

Schematic illustration presents the construction of gold–copper alloy nanoparticles (AuCu alloy NPs) on the surface of screen-printed carbon electrode (SPCE). The highly branched nanostructures of AuCu alloys with different surface structure and metal ratios give selective electrocatalysis behaviors. Cu-rich AuCu nanobramble–based sensor reveals prominent electrocatalytic activity for glucose detection. Au-rich AuCu nanostar–based sensor provides good electrochemical response for H2O2 detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu Z, Wu L, Zhang J, Dai W, Mo G, Ye J (2019) Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater Sci Eng C Mater Biol Appl 102:708–717. https://doi.org/10.1016/j.msec.2019.04.072

    Article  CAS  PubMed  Google Scholar 

  2. Guler M, Dilmac Y (2019) Palladium nanoparticles decorated (3-aminopropyl)triethoxysilane functionalized reduced graphene oxide for electrochemical determination of glucose and hydrogen peroxide. J Electroanal Chem 834:49–55. https://doi.org/10.1016/j.jelechem.2018.12.052

    Article  CAS  Google Scholar 

  3. Yang H, Wang Z, Zhou Q, Xu C, Hou J (2019) Nanoporous platinum-copper flowers for non-enzymatic sensitive detection of hydrogen peroxide and glucose at near-neutral pH values. Mikrochim Acta 186(9):631. https://doi.org/10.1007/s00604-019-3728-7

    Article  CAS  PubMed  Google Scholar 

  4. Dhara K, Mahapatra DR (2017) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Mikrochim Acta 185(1):49. https://doi.org/10.1007/s00604-017-2609-1

    Article  CAS  PubMed  Google Scholar 

  5. Chakraborty P, Dhar S, Debnath K, Mondal SP (2019) Glucose and hydrogen peroxide dual-mode electrochemical sensing using hydrothermally grown CuO nanorods. J Electroanal Chem 833:213–220. https://doi.org/10.1016/j.jelechem.2018.11.060

    Article  CAS  Google Scholar 

  6. Wang L, Li J, Pan Y, Min L, Zhang Y, Hu X, Yang Z (2017) Platinum nanoparticle-assembled nanoflake-like tin disulfide for enzyme-based amperometric sensing of glucose. Microchim Acta 184(7):2357–2363. https://doi.org/10.1007/s00604-017-2209-0

    Article  CAS  Google Scholar 

  7. Sookhakian M, Zalnezhad E, Alias Y (2017) Layer-by-layer electrodeposited nanowall-like palladium-reduced graphene oxide film as a highly-sensitive electrochemical non-enzymatic sensor. Sensors Actuators B Chem 241:1–7. https://doi.org/10.1016/j.snb.2016.10.053

    Article  CAS  Google Scholar 

  8. Song R-M, Li Z-H, Wei P-J, Zhao X-L, Chen C, Zhu Z-G (2018) Flexible hydrogen peroxide sensors based on platinum modified free-standing reduced graphene oxide paper. Appl Sci 8(6):848. https://doi.org/10.3390/app8060848

    Article  CAS  Google Scholar 

  9. Kumar-Krishnan S, Prokhorov E, Arias de Fuentes O, Ramírez M, Bogdanchikova N, Sanchez IC, Mota-Morales JD, Luna-Bárcenas G (2015) Temperature-induced Au nanostructure synthesis in a nonaqueous deep-eutectic solvent for high performance electrocatalysis. J Mater Chem A 3(31):15869–15875. https://doi.org/10.1039/c5ta02606g

    Article  CAS  Google Scholar 

  10. Gholami M, Koivisto B (2019) A flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into Nafion. Appl Surf Sci 467-468:112–118. https://doi.org/10.1016/j.apsusc.2018.10.113

    Article  CAS  Google Scholar 

  11. Liu X, Long L, Yang W, Chen L, Jia J (2018) Facilely electrodeposited coral-like copper micro-/nano-structure arrays with excellent performance in glucose sensing. Sensors Actuators B Chem 266:853–860. https://doi.org/10.1016/j.snb.2018.04.007

    Article  CAS  Google Scholar 

  12. Lee WC, Kim KB, Gurudatt NG, Hussain KK, Choi CS, Park DS, Shim YB (2019) Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens Bioelectron 130:48–54. https://doi.org/10.1016/j.bios.2019.01.028

    Article  CAS  PubMed  Google Scholar 

  13. Lin L, Weng S, Zheng Y, Liu X, Ying S, Chen F, You D (2020) Bimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potential. J Electroanal Chem 865:114147. https://doi.org/10.1016/j.jelechem.2020.114147

    Article  CAS  Google Scholar 

  14. He G, Gao F, Li W, Li P, Zhang X, Yin H, Yang B, Liu Y, Zhang S (2019) Electrochemical sensing of H2O2 released from living cells based on AuPd alloy-modified PDA nanotubes. Anal Methods 11(12):1651–1656. https://doi.org/10.1039/c8ay02743a

    Article  CAS  Google Scholar 

  15. Arvinte A, Crudu I-A, Doroftei F, Timpu D, Pinteala M (2018) Electrochemical codeposition of silver-gold nanoparticles on CNT-based electrode and their performance in electrocatalysis of dopamine. J Electroanal Chem 829:184–193. https://doi.org/10.1016/j.jelechem.2018.10.017

    Article  CAS  Google Scholar 

  16. Yang M, Guo Z, Li L-N, Huang Y-Y, Liu J-H, Zhou Q, Chen X, Huang X-J (2016) Electrochemical determination of arsenic(III) with ultra-high anti-interference performance using Au–Cu bimetallic nanoparticles. Sensors Actuators B Chem 231:70–78. https://doi.org/10.1016/j.snb.2016.03.009

    Article  CAS  Google Scholar 

  17. Chen LY, Fujita T, Ding Y, Chen MW (2010) A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing. Adv Funct Mater 20(14):2279–2285. https://doi.org/10.1002/adfm.201000326

    Article  CAS  Google Scholar 

  18. Shi H, Zhang Z, Wang Y, Zhu Q, Song W (2011) Bimetallic nano-structured glucose sensing electrode composed of copper atoms deposited on gold nanoparticles. Microchim Acta 173(1–2):85–94. https://doi.org/10.1007/s00604-010-0543-6

    Article  CAS  Google Scholar 

  19. Tai C-Y, Chang J-L, Lee J-F, Chan T-S, Zen J-M (2011) Preparation and characterization of an AuCu3 alloy electrode for electrocatalytic applications. Electrochim Acta 56(9):3115–3121. https://doi.org/10.1016/j.electacta.2011.01.071

    Article  CAS  Google Scholar 

  20. Liu D, Luo Q, Zhou F (2010) Nonenzymatic glucose sensor based on gold–copper alloy nanoparticles on defect sites of carbon nanotubes by spontaneous reduction. Synth Met 160(15–16):1745–1748. https://doi.org/10.1016/j.synthmet.2010.06.011

    Article  CAS  Google Scholar 

  21. Wang N, Han Y, Xu Y, Gao C, Cao X (2015) Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem 87(1):457–463. https://doi.org/10.1021/ac502682n

    Article  CAS  PubMed  Google Scholar 

  22. Amiripour F, Azizi SN, Ghasemi S (2018) Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine. Biosens Bioelectron 107:111–117. https://doi.org/10.1016/j.bios.2018.02.016

    Article  CAS  PubMed  Google Scholar 

  23. Sun F, Wang Z (2019) Highly-branched dendrite cuprous oxide films for non-enzymatic amperometric glucose sensor. Mater Lett 234:62–65. https://doi.org/10.1016/j.matlet.2018.09.054

    Article  CAS  Google Scholar 

  24. Baek SH, Roh J, Park CY, Kim MW, Shi R, Kailasa SK, Park TJ (2020) Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater Sci Eng C Mater Biol Appl 107:110273. https://doi.org/10.1016/j.msec.2019.110273

    Article  CAS  PubMed  Google Scholar 

  25. Liao HG, Jiang YX, Zhou ZY, Chen SP, Sun SG (2008) Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew Chem 47(47):9100–9103. https://doi.org/10.1002/anie.200803202

    Article  CAS  Google Scholar 

  26. Li Y, Ma J, Ma Z (2013) Synthesis of gold nanostars with tunable morphology and their electrochemical application for hydrogen peroxide sensing. Electrochim Acta 108:435–440. https://doi.org/10.1016/j.electacta.2013.06.141

    Article  CAS  Google Scholar 

  27. He R, Wang YC, Wang X, Wang Z, Liu G, Zhou W, Wen L, Li Q, Wang X, Chen X, Zeng J, Hou JG (2014) Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun 5:4327. https://doi.org/10.1038/ncomms5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar-Krishnan S, Esparza R, Pal U (2020) Controlled fabrication of flower-shaped au-cu nanostructures using a deep eutectic solvent and their performance in surface-enhanced Raman scattering-based molecular sensing. ACS Omega 5(7):3699–3708. https://doi.org/10.1021/acsomega.9b04355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Molleman B, Hiemstra T (2018) Size and shape dependency of the surface energy of metallic nanoparticles: unifying the atomic and thermodynamic approaches. Phys Chem Chem Phys 20(31):20575–20587. https://doi.org/10.1039/C8CP02346H

    Article  CAS  PubMed  Google Scholar 

  30. Langhus DL (2001) Analytical electrochemistry, 2nd edition (Wang, Joseph). J Chem Educ 78(4):457. https://doi.org/10.1021/ed078p457.2

    Article  CAS  Google Scholar 

  31. Tominaga M, Taema Y, Taniguchi I (2008) Electrocatalytic glucose oxidation at bimetallic gold–copper nanoparticle-modified carbon electrodes in alkaline solution. J Electroanal Chem 624(1–2):1–8. https://doi.org/10.1016/j.jelechem.2008.07.005

    Article  CAS  Google Scholar 

  32. Gong X, Gu Y, Zhang F, Liu Z, Li Y, Chen G, Wang B (2019) High-performance non-enzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition. Front Mater 6:6. https://doi.org/10.3389/fmats.2019.00003

    Article  Google Scholar 

  33. Qin L, He L, Zhao J, Zhao B, Yin Y, Yang Y (2017) Synthesis of Ni/Au multilayer nanowire arrays for ultrasensitive non-enzymatic sensing of glucose. Sensors Actuators B Chem 240:779–784. https://doi.org/10.1016/j.snb.2016.09.041

    Article  CAS  Google Scholar 

  34. Huang J, Zhu Y, Yang X, Chen W, Zhou Y, Li C (2015) Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled. Nanoscale 7(2):559–569. https://doi.org/10.1039/C4NR05620E

    Article  CAS  PubMed  Google Scholar 

  35. Guler M, Turkoglu V, Bulut A, Zahmakiran M (2018) Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochim Acta 263:118–126. https://doi.org/10.1016/j.electacta.2018.01.048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A fruitful discussion with Prof. Dr. Supapan Seraphin (NSTDA PAC) is acknowledged.

Funding

This work is supported by the National Science and Technology Development Agency (NSTDA), Thailand (Funding program number P1851654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kullavadee Karn-orachai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.91 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngamaroonchote, A., Sanguansap, Y., Wutikhun, T. et al. Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Microchim Acta 187, 559 (2020). https://doi.org/10.1007/s00604-020-04542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04542-x

Keywords

Navigation