当前位置: X-MOL 学术Heat Mass Transfer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal ageing of proteinaceous fouling layers during the growth phase
Heat and Mass Transfer ( IF 2.2 ) Pub Date : 2020-09-11 , DOI: 10.1007/s00231-020-02960-4
Lukas Schnöing , Wolfgang Augustin , Stephan Scholl

Fouling in heat exchangers can complicate the characterisation and interpretation of thermal effects because of ageing phenomena that occur within the deposited fouling layer. The prevailing process temperatures between the liquid bulk and heat-transferring surfaces create a large thermal conductivity distribution according to the position of the layer within the deposit. During the growth phase, an interaction occurs between the fouling layer formation and ageing. Therefore, deposition and ageing should always be considered in combination to obtain a better understanding of fouling. This paper discusses an experimental method for determining temperature-dependent ageing, expressed as a change in thermal conductivity with time and along the cross section of the fouling layer. An experimental setup is presented that includes a newly developed flow channel and an experimental implementation of an ageing model. In the first experiments, proteinaceous fouling layers were generated from whey protein concentrate (WPC) with and without simulated milk ultrafiltrate (SMUF), applied for different durations to create different fouling layer thicknesses. The thermal conductivity increased more rapidly near the heat-transferring surface than for the entire fouling layer. These findings can be related to the temperatures within the sublayers.



中文翻译:

蛋白质污垢层在生长期的热老化

由于在沉积的结垢层中发生的老化现象,热交换器中的结垢会使热效应的表征和解释复杂化。液体本体和传热表面之间的主要处理温度根据沉积物中层的位置产生较大的热导率分布。在生长期,结垢层的形成和老化之间会发生相互作用。因此,应始终结合考虑沉积和老化,以更好地了解结垢。本文讨论了一种确定温度相关老化的实验方法,该方法表示为导热系数随时间并沿着结垢层的横截面而变化。提出了一个实验设置,其中包括一个新开发的流道和一个老化模型的实验实现。在第一个实验中,含乳清蛋白浓缩物(WPC)在有和没有模拟牛奶超滤液(SMUF)的情况下均产生蛋白质污垢层,并在不同的时间段施加不同的污垢层厚度。与整个结垢层相比,热传递表面附近的热导率增加更快。这些发现可能与子层内的温度有关。施加不同的持续时间以产生不同的结垢层厚度。与整个结垢层相比,热传递表面附近的热导率增加更快。这些发现可能与子层内的温度有关。施加不同的持续时间以产生不同的结垢层厚度。与整个结垢层相比,在热传递表面附近的热导率增加更快。这些发现可能与子层内的温度有关。

更新日期:2020-09-11
down
wechat
bug