当前位置: X-MOL 学术Soil Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Changes in soil-pores and wheat root geometry due to strategic tillage in a no-tillage cropping system
Soil Research ( IF 1.2 ) Pub Date : 2021-01-01 , DOI: 10.1071/sr20010
Promil Mehra , Pankaj Kumar , Nanthi Bolan , Jack Desbiolles , Susan Orgill , Matthew D. Denton

Tillage management can influence soil physical properties such as soil strength, moisture content, temperature, nutrient and oxygen availability, which in turn can affect crop growth during the early establishment phase. However, a short-term ‘strategic’ conventional tillage (CT) shift in tillage practice in a continuous no-tillage (NT) cropping system may change the soil-pore and root geometry. This study identifies the impact of a tillage regime shift on the belowground soil-pore and root geometry. Micro X-ray computed tomography (µXCT) was used to quantify, measure and compare the soil-pore and root architecture associated with the impact of tillage shift across different plant growth stages. Soil porosity was 12.2% higher under CT in the top 0–100 mm and 7.4% in the bottom 100–200 mm of the soil core compared with NT. Soil-pore distribution, i.e. macroporosity (>75 μm), was 13.4% higher under CT, but mesoporosity (30–75 μm) was 9.6% higher under NT. The vertical distributions of root biomass and root architecture measurements (i.e. root length density) in undisturbed soil cores were 9.6% higher under the NT and 8.7% higher under the CT system respectively. These results suggest that low soil disturbance under the continuous NT system may have encouraged accumulation of more root biomass in the top 100 mm depth, thus developing better soil structure. Overall, µXCT image analyses of soil cores indicated that this tillage shift affected the soil total carbon, due to the significantly higher soil-pore (i.e. pore surface area, porosity and average pore size area) and root architecture (i.e. root length density, root surface density and root biomass) measurements under the CT system.

中文翻译:

免耕种植系统中战略性耕作引起的土壤孔隙和小麦根系几何形状的变化

耕作管理会影响土壤的物理特性,如土壤强度、水分含量、温度、养分和氧气的有效性,进而会影响早期建立阶段的作物生长。然而,在连续免耕 (NT) 耕作系统中耕作实践中的短期“战略性”常规耕作 (CT) 转变可能会改变土壤孔隙和根的几何形状。这项研究确定了耕作制度转变对地下土壤孔隙和根部几何形状的影响。微 X 射线计算机断层扫描 (μXCT) 用于量化、测量和比较与不同植物生长阶段耕作转移影响相关的土壤孔隙和根系结构。与 NT 相比,在 CT 下,土壤核心顶部 0-100 毫米的土壤孔隙度高 12.2%,底部 100-200 毫米的土壤孔隙度高 7.4%。土壤孔隙分布,即。e. CT 下大孔隙度 (>75 μm) 高 13.4%,但 NT 下中孔率 (30-75 μm) 高 9.6%。在未受干扰的土壤核心中,根生物量和根系结构测量值(即根长密度)的垂直分布在 NT 系统下分别高出 9.6% 和在 CT 系统下高出 8.7%。这些结果表明,连续 NT 系统下的低土壤扰动可能促进了顶部 100 毫米深度处更多根生物量的积累,从而形成了更好的土壤结构。总体而言,土壤核心的 µXCT 图像分析表明,由于土壤孔隙(即孔隙表面积、孔隙率和平均孔径面积)和根系结构(即根长密度、根系CT 系统下的表面密度和根生物量)测量。CT 下大孔隙度 (>75 μm) 高 13.4%,但 NT 下中孔率 (30–75 μm) 高 9.6%。在未受干扰的土壤核心中,根生物量和根系结构测量值(即根长密度)的垂直分布在 NT 系统下分别高出 9.6% 和在 CT 系统下高出 8.7%。这些结果表明,连续 NT 系统下的低土壤扰动可能促进了顶部 100 毫米深度处更多根生物量的积累,从而形成了更好的土壤结构。总体而言,土壤核心的 µXCT 图像分析表明,由于土壤孔隙(即孔隙表面积、孔隙率和平均孔径面积)和根系结构(即根长密度、根系CT 系统下的表面密度和根生物量)测量。CT 下大孔隙度 (>75 μm) 高 13.4%,但 NT 下中孔率 (30-75 μm) 高 9.6%。在未受干扰的土壤核心中,根生物量和根系结构测量值(即根长密度)的垂直分布在 NT 系统下分别高出 9.6% 和在 CT 系统下高出 8.7%。这些结果表明,连续 NT 系统下的低土壤扰动可能促进了顶部 100 毫米深度内更多根生物量的积累,从而形成了更好的土壤结构。总体而言,土壤核心的 µXCT 图像分析表明,由于土壤孔隙(即孔隙表面积、孔隙率和平均孔径面积)和根系结构(即根长密度、根系CT 系统下的表面密度和根生物量)测量。
更新日期:2021-01-01
down
wechat
bug