当前位置: X-MOL 学术Struct. Multidisc. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensitivity-based adaptive sequential sampling for metamodel uncertainty reduction in multilevel systems
Structural and Multidisciplinary Optimization ( IF 3.6 ) Pub Date : 2020-07-24 , DOI: 10.1007/s00158-020-02673-6
Can Xu , Zhao Liu , Ping Zhu , Mushi Li

Decomposition-based technique is often used in the analysis and design of complex engineering systems for reducing the computational complexity by studying the subsystems decomposed from multilevel systems. Metamodels, as a replacement of original simulation models, can further alleviate the computational burden. However, discrepancy between the simulation models and metamodels, which is defined as metamodel uncertainty, may be introduced in the analysis process of multilevel systems owing to the lack of data. The metamodel uncertainties of sub-models will be further amplified because of the hierarchical uncertainty propagation and interaction between uncertainties, which will have a great impact on the system results. An adaptive sequential sampling strategy based on sensitivity is proposed in this paper so as to improve the prediction accuracy of system response. In this strategy, polynomial-chaos expansion is used to realize the forward propagation of metamodel uncertainty quantified by the Kriging model. The forward propagation is combined with optimization based on maximum variance criterion for searching the input locations that results in the largest variance of system response. Then, the indices of subsystems are obtained to make decisions about which subsystem needs extra samples by combining Karhunen-Loeve expansion and sensitivity analysis. The effectiveness of the proposed sequential sampling strategy method is verified by two mathematical examples and a multiscale composite material.



中文翻译:

基于灵敏度的自适应顺序采样在多级系统中降低元模型的不确定性

基于分解的技术通常用于复杂工程系统的分析和设计中,以通过研究从多级系统分解的子系统来降低计算复杂性。元模型可以替代原始的仿真模型,从而进一步减轻计算负担。但是,由于缺乏数据,可能会在多级系统的分析过程中引入模拟模型和元模型之间的差异(称为元模型不确定性)。由于层次不确定性的传播以及不确定性之间的相互作用,子模型的元模型不确定性将进一步放大,这将对系统结果产生很大的影响。提出了一种基于灵敏度的自适应顺序采样策略,以提高系统响应的预测精度。在该策略中,使用多项式混沌展开来实现由克里格模型量化的元模型不确定性的正向传播。正向传播与基于最大方差准则的优化相结合,以搜索导致系统响应方差最大的输入位置。然后,通过结合Karhunen-Loeve展开和敏感性分析来获得子系统的索引,以决定哪个子系统需要额外的样本。通过两个数学示例和一种多尺度复合材料验证了所提出的顺序采样策略方法的有效性。多项式-混沌展开用于实现由克里格模型量化的元模型不确定性的正向传播。正向传播与基于最大方差准则的优化相结合,以搜索导致系统响应方差最大的输入位置。然后,通过结合Karhunen-Loeve展开和敏感性分析来获得子系统的索引,以决定哪个子系统需要额外的样本。通过两个数学示例和一种多尺度复合材料验证了所提出的顺序采样策略方法的有效性。多项式-混沌展开用于实现由克里格模型量化的元模型不确定性的正向传播。正向传播与基于最大方差准则的优化相结合,以搜索导致系统响应方差最大的输入位置。然后,通过结合Karhunen-Loeve展开和敏感性分析来获得子系统的索引,以决定哪个子系统需要额外的样本。通过两个数学示例和一种多尺度复合材料验证了所提出的顺序采样策略方法的有效性。正向传播与基于最大方差准则的优化相结合,以搜索导致系统响应方差最大的输入位置。然后,通过结合Karhunen-Loeve展开和敏感性分析来获得子系统的索引,以决定哪个子系统需要额外的样本。通过两个数学示例和一种多尺度复合材料验证了所提出的顺序采样策略方法的有效性。正向传播与基于最大方差准则的优化相结合,以搜索导致系统响应方差最大的输入位置。然后,通过结合Karhunen-Loeve展开和敏感性分析来获得子系统的索引,以决定哪个子系统需要额外的样本。通过两个数学示例和一种多尺度复合材料验证了所提出的顺序采样策略方法的有效性。

更新日期:2020-08-22
down
wechat
bug