当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sequentially Coupled Simulation of Multiphysical Fields During Twin-Electrode Electroslag Remelting Process
Metallurgical and Materials Transactions B ( IF 2.4 ) Pub Date : 2020-08-10 , DOI: 10.1007/s11663-020-01928-3
Fang Wang , Qiang Wang , Jakov Baleta , Baokuan Li

A transient three-dimensional (3D) sequentially coupled mathematical model has been developed to explore multiphysical fields in the twin-electrode electroslag remelting (TE-ESR) furnace. The mechanical APDL module based on the finite element method and the Fluid Dynamics module based on the finite volume method were used to resolve the electromagnetic field and simulate the fluid flow, heat transfer, and solidification process, respectively. The resulting electromagnetic force and Joule heating were incorporated into the source terms of Navier–Stokes and energy conservation equations, respectively. The motion of molten metal droplets and fluctuation of slag/metal interface were tracked by the volume of fluid (VOF) approach. The enthalpy-based technique was employed to simulate the solidification. The results show that the current density is distributed uniformly due to the proximity effect. This is very different from the traditional ESR process during which the skin effect phenomenon is dominated. Besides, the current density is mainly distributed in the slag, only one-fifth flowing through the ingots. The magnitude of velocities in the molten slag is two orders of magnitude higher than those in the steel. The highest temperature zone in the TE-ESR process occurs in the middle of twin-electrode, whereas in the traditional ESR process it occurs beneath the electrode tip. Finally, parametric studies including melting rate, slag thickness, electrode diameter, and center distance have been conducted in detail.

中文翻译:

双电极电渣重熔过程中多物理场的顺序耦合模拟

已经开发了瞬态三维 (3D) 顺序耦合数学模型来探索双电极电渣重熔 (TE-ESR) 炉中的多物理场。基于有限元法的机械APDL模块和基于有限体积法的流体动力学模块分别用于解析电磁场并模拟流体流动、传热和凝固过程。由此产生的电磁力和焦耳热分别被纳入纳维-斯托克斯方程和能量守恒方程的源项中。通过流体体积 (VOF) 方法跟踪熔融金属液滴的运动和渣/金属界面的波动。采用基于焓的技术来模拟凝固。结果表明,由于邻近效应,电流密度分布均匀。这与以趋肤效应现象为主的传统ESR过程有很大不同。此外,电流密度主要分布在熔渣中,只有五分之一流过铸锭。熔渣中的速度大小比钢中的速度高两个数量级。TE-ESR 工艺中的最高温度区出现在双电极中间,而在传统 ESR 工艺中,它出现在电极尖端下方。最后,详细地进行了包括熔化速率、渣厚度、电极直径和中心距的参数研究。这与以趋肤效应现象为主的传统ESR过程有很大不同。此外,电流密度主要分布在熔渣中,只有五分之一流过铸锭。熔渣中的速度大小比钢中的速度高两个数量级。TE-ESR 工艺中的最高温度区出现在双电极中间,而在传统 ESR 工艺中,它出现在电极尖端下方。最后,详细地进行了包括熔化速率、渣厚度、电极直径和中心距的参数研究。这与以趋肤效应现象为主的传统ESR过程有很大不同。此外,电流密度主要分布在熔渣中,只有五分之一流过铸锭。熔渣中的速度大小比钢中的速度高两个数量级。TE-ESR 工艺中的最高温度区出现在双电极中间,而在传统 ESR 工艺中,它出现在电极尖端下方。最后,详细地进行了包括熔化速率、渣厚度、电极直径和中心距的参数研究。熔渣中的速度大小比钢中的速度高两个数量级。TE-ESR 工艺中的最高温度区出现在双电极中间,而在传统 ESR 工艺中,它出现在电极尖端下方。最后,详细地进行了包括熔化速率、渣厚度、电极直径和中心距的参数研究。熔渣中的速度大小比钢中的速度高两个数量级。TE-ESR 工艺中的最高温度区出现在双电极中间,而在传统 ESR 工艺中,它出现在电极尖端下方。最后,详细地进行了包括熔化速率、渣厚度、电极直径和中心距的参数研究。
更新日期:2020-08-10
down
wechat
bug