Skip to main content
Log in

Sequentially Coupled Simulation of Multiphysical Fields During Twin-Electrode Electroslag Remelting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A transient three-dimensional (3D) sequentially coupled mathematical model has been developed to explore multiphysical fields in the twin-electrode electroslag remelting (TE-ESR) furnace. The mechanical APDL module based on the finite element method and the Fluid Dynamics module based on the finite volume method were used to resolve the electromagnetic field and simulate the fluid flow, heat transfer, and solidification process, respectively. The resulting electromagnetic force and Joule heating were incorporated into the source terms of Navier–Stokes and energy conservation equations, respectively. The motion of molten metal droplets and fluctuation of slag/metal interface were tracked by the volume of fluid (VOF) approach. The enthalpy-based technique was employed to simulate the solidification. The results show that the current density is distributed uniformly due to the proximity effect. This is very different from the traditional ESR process during which the skin effect phenomenon is dominated. Besides, the current density is mainly distributed in the slag, only one-fifth flowing through the ingots. The magnitude of velocities in the molten slag is two orders of magnitude higher than those in the steel. The highest temperature zone in the TE-ESR process occurs in the middle of twin-electrode, whereas in the traditional ESR process it occurs beneath the electrode tip. Finally, parametric studies including melting rate, slag thickness, electrode diameter, and center distance have been conducted in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\( A_{x} \) :

x component of magnetic flux density (T)

\( A_{y} \) :

y component of magnetic flux density (T)

\( A_{z} \) :

z component of magnetic flux density (T)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} \) :

Magnetic potential vector [(V s)/m]

\( A_{\text{s}} \) :

Mushy zone constant (Pa s/m2)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {B} \) :

Magnetic flux density (T)

\( C_{\text{h}} \) :

Heat capacity (J/(kg K))

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {D} \) :

Electric flux density(C/m2)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {E} \) :

Electric field intensity (N/C)

\( f_{\text{l}} \) :

Liquid fraction

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {F}_{\text{eff}} \) :

Lorentz force (N/m3)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {F}_{\text{buo}} \) :

Buoyancy force (N/m3)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {F}_{\text{sou}} \) :

Damping force (N/m3)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {g} \) :

Acceleration due to the gravitational force (m2/s)

\( h_{{}} \) :

Sensible enthalpy (J/kg)

\( h_{\text{ref}} \) :

Reference enthalpy (J/kg)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {H} \) :

Magnetic field intensity (A/m)

\( H \) :

Enthalpy (J/kg)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {J} \) :

Current density (A/m2)

\( L \) :

Latent heat (J/kg)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {P} \) :

Pressure (Pa)

\( Q_{\text{total}} \) :

Joule heating (W/m3)

Rem :

Magnetic Reynolds number

\( t \) :

Time (s)

\( T \) :

Temperature (K)

T l :

Liquidus temperature (K)

\( T_{\text{ref}} \) :

Reference temperature (K)

Ts :

Solidus temperature (K)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {v} \) :

Velocity (m/s)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {v}_{\text{cast}} \) :

Casting velocity (m/s)

x, y, z :

Cartesian coordinates

\( \alpha \) :

Volume fraction

\( \beta \) :

Thermal expansion coefficient (1/K)

\( \lambda_{\text{p}} \) :

Effective thermal conductivity (W/(m K))

\( \mu \) :

Dynamic viscosity (Pa s)

\( \mu_{\text{eff}} \) :

Effective viscosity (Pa s)

\( \rho \) :

Density (kg/m3)

\( \sigma \) :

Electrical conductivity (1/(Ω m))

\( \varphi \) :

Electric potential (V)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {\omega } \) :

Joule heating power density(kW/m3)

References

  1. A. Kharicha, E. Karimi-Sibaki, M.Wu, A. Ludwig, and J. Bohacek: Steel Res.Int., 2018, vol.89, 1700100.

    Article  Google Scholar 

  2. C. Z. Wang, J. C. Song, S. Li, Mater. Res. Innovations., 2015, vol.19, pp. 222

    Article  CAS  Google Scholar 

  3. F. Wang and B. Li: 140th TMS Annual Meeting and Exhibition, San Diego, CA, 2011, pp. 779–86.

  4. 4.B. Li, B. Wang and T. Fumitaka: Metall. Mater. Trans. B., 2014, vol.45, pp.1122-32.

    Article  Google Scholar 

  5. A. Dilawari and J. Szekely: Metall. Mater. Trans. B., 1977, 8B, pp. 227-36.

    Article  Google Scholar 

  6. S. Vishwanathan, D.K. Melgaard, A.D. Patel and D.G. Evans: International Symposium on Liquid Metal Processing and Casting, Santa Fe, 2005, pp. 145–54.

  7. 7.F. Wang, Q. Wang and B.K. Li: ISIJ Int., 2017, vol.57, pp. 91-9.

    Article  CAS  Google Scholar 

  8. A. Kharicha, M. Wu and A. Ludwig: Metall. Mater. Trans. B., 2016, vol.47, pp.1427-34.

    Article  Google Scholar 

  9. M. Hugo, B. Dussoubs, A. Jardy, J. Escaffre and H Poisson: Metall. Mater. Trans. B., 2016, vol.47, pp.2607-22.

    Article  Google Scholar 

  10. 10.Q. Wang, Z. He, G. Li and B. Li: Appl. Therm. Eng. 2016, vol. 103, pp.419-27.

    Article  CAS  Google Scholar 

  11. L.B. Medovar, A.K. Tsykulenko, A.V. Chernets, B. B. Fedorovskii, V.E. Shevchenko, I.A. Lantsman, T.F. Grabovskii, V.I. Us, and V.L. Petrenko: Adv. Spec. Electrometall., 2000, vol. 16, pp. 193–96.

    Google Scholar 

  12. A.K. Tskulenko, I.A. Lantsman, L.B. Medovar, A.V. Chernets, V. E. Shevchenko, B.B. Fedorovskii, T.F. Grabovskii, and V.I. Us: Adv. Spec. Electrometall., 2000, vol. 16, pp. 141–44.

    Google Scholar 

  13. Y. Dong, Z, Hou, Z Jiang and H. Liu: Metall. Mater. Trans. B., 2018, vol.49, pp.349-360.

    Article  Google Scholar 

  14. N. Ren, B. Li, L. Li, F. Qi and Z.Q. Liu: Ironmaking Steelmaking., 2018, vol 45, pp.1-10.

    Article  Google Scholar 

  15. F. Wang, Y. Xiong, B. Li and F. Liu: Steel Res. Int., 2019, vol.89, 1800481.

    Article  Google Scholar 

  16. Y.M. Ferng, C.C. Chieng, and C. Pan: Numer. Heat Transf. A, 1989, vol. 16, pp. 429–49.

    Article  Google Scholar 

  17. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V.Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 42, pp. 271–80.

    Article  Google Scholar 

  18. O. Biro and K. Preis: IEEE Trans. Magn., 1989, vol. 25, pp. 3145–59.

    Article  Google Scholar 

  19. J. Baleta, M. Martinjak, M.Vujanović, K. Pachler, J. Wang, N.Duić: J. Environ. Manage., 2017, vol.203, pp.1047-61.

    Article  CAS  Google Scholar 

  20. A. Jardy, D. Ablitzer, and J.F. Wadier: Metall. Trans. B, 1991, vol. 22, pp. 111–20.

    Article  CAS  Google Scholar 

  21. M. Choudhary and J. Szekely: Metall. Trans. B, 1980, vol. 11, pp. 439–53.

    Article  Google Scholar 

  22. A. Ruckert and H. Pfeifer: International Scientific Colloquium Modelling for Electromagnetic Processing, Hannover, 2008, pp. 27–29.

  23. A. Kharicha, W. Schutzenhofer, A. Ludwig, G. Reiter, and M. Wu: Steel Res. Int., 2008, vol. 79, pp. 632–36.

    Article  CAS  Google Scholar 

  24. A. Mitchell: Mater. Sci. Technol., 2009, vol. 25, pp. 186–90.

    Article  CAS  Google Scholar 

  25. A. Kharicha, W. Schutzenhofer, A. Ludwig, G. Reiter, and M. Wu: Int. J. Cast Met. Res., 2009, vol. 22, pp. 155–59.

    Article  Google Scholar 

  26. J. Baleta, F. Qi, M. Zivic and M. Lovrenic-Jugovic: Therm. Sci., 2018, vol.22, pp.1943–53.

    Article  Google Scholar 

  27. B. Hernandez-Morales and A. Mitchell: Ironmak. Steelmak., 1999, vol. 26, pp. 423–38.

    Article  CAS  Google Scholar 

  28. A. Mitchell: Mat. Sci. Eng. A, 2005, vol. 413, pp. 10–18.

    Article  Google Scholar 

  29. E. Karimi-Sibaki, A. Kharicha and J. Bohacek: Metall. Mater. Trans. B., 2015, vol.46, pp.2049-61.

    Article  Google Scholar 

  30. F. Wang, Q. Wang, J. Baleta and B. Li: JOM, 2019, vol.71, pp.1-8.

    Article  Google Scholar 

  31. Q. Wang and B. Li: ISIJ Int., 2016, vol.56, pp.282-7.

    Article  CAS  Google Scholar 

  32. Q. Wang and B. Li: Appl. Therm. Eng.. 2015, vol. 81, pp.116-25.

    Article  Google Scholar 

  33. F. Wang, Y. Xiong, B. Li and F. Liu: Steel Res. Int., 2019, vol.89, 1800092.

    Article  Google Scholar 

Download references

Acknowledgments

The authors’ gratitude goes to Key Program of Funds of the National Natural Science Foundation of China (Grant No. 51934002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 18, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, Q., Baleta, J. et al. Sequentially Coupled Simulation of Multiphysical Fields During Twin-Electrode Electroslag Remelting Process. Metall Mater Trans B 51, 2285–2297 (2020). https://doi.org/10.1007/s11663-020-01928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01928-3

Navigation