当前位置: X-MOL 学术Biochemistry Moscow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electric Cables of Living Cells. II. Bacterial Electron Conductors
Biochemistry (Moscow) ( IF 2.3 ) Pub Date : 2020-08-01 , DOI: 10.1134/s0006297920080118
V. V. Ptushenko

Abstract The concept of “electric cables” involved in bioenergetic processes of a living cell was proposed half a century ago [Skulachev, V. P. (1971) Curr. Top. Bioenerg. , Elsevier, pp. 127-190]. For many decades, only cell membrane structures have been considered as probable pathways for the electric current, namely, for the transfer of transmembrane electrochemical potential. However, the last ten to fifteen years have brought the discovery of bacterial “electric cables” of a new type. In 2005, “nanowires” conducting electric current over distances of tens of micrometers were discovered in metal- and sulphate-reducing bacteria [Reguera, G. et al. (2005) Nature , 435 , pp. 1098-1101]. The next five years have witnessed the discovery of microbial electric currents over centimeter distances [Nielsen, L. P. et al. (2010) Nature , 463 , 1071-1074]. This new group of bacteria allowing electric currents to flow over macroscopic distances was later called cable bacteria. Nanowires and conductive structures of cable bacteria serve to solve a special problem of membrane bioenergetics: they connect two redox half-reactions. In other words, unlike membrane “cables”, their function is electron transfer in the course of oxidative phosphorylation for the generation of membrane energy rather than of the end-product. The most surprising is the protein nature of these cables (at least of some of them) indicated by recent data, since no protein wires for the long-distance electron transport had been previously known in living systems.

中文翻译:

活细胞电缆。二、细菌电子导体

摘要 半个世纪前提出了参与活细胞生物能过程的“电缆”概念 [Skulachev, VP (1971) Curr. 最佳。生物能源 , Elsevier, pp. 127-190]。几十年来,只有细胞膜结构被认为是电流的可能途径,即跨膜电化学势的转移。然而,最近十到十五年带来了一种新型细菌“电缆”的发现。2005 年,在金属和硫酸盐还原细菌中发现了在数十微米距离上传导电流的“纳米线”[Reguera, G. et al. (2005) Nature, 435, pp. 1098-1101]。接下来的五年见证了超过厘米距离的微生物电流的发现 [Nielsen, LP et al. (2010) 自然 , 463 , 1071-1074]。这组允许电流在宏观距离上流动的新细菌后来被称为电缆细菌。电缆细菌的纳米线和导电结构用于解决膜生物能学的一个特殊问题:它们连接两个氧化还原半反应。换句话说,与膜“电缆”不同,它们的功能是在氧化磷酸化过程中进行电子转移,以产生膜能量而不是最终产物。最令人惊讶的是最近数据表明这些电缆(至少其中一些)的蛋白质性质,因为以前在生命系统中没有已知用于长距离电子传输的蛋白质线。电缆细菌的纳米线和导电结构用于解决膜生物能学的一个特殊问题:它们连接两个氧化还原半反应。换句话说,与膜“电缆”不同,它们的功能是在氧化磷酸化过程中进行电子转移,以产生膜能量而不是最终产物。最令人惊讶的是最近数据表明这些电缆(至少其中一些)的蛋白质性质,因为以前在生命系统中没有已知用于长距离电子传输的蛋白质线。电缆细菌的纳米线和导电结构用于解决膜生物能学的一个特殊问题:它们连接两个氧化还原半反应。换句话说,与膜“电缆”不同,它们的功能是在氧化磷酸化过程中进行电子转移,以产生膜能量而不是最终产物。最令人惊讶的是最近数据表明这些电缆(至少其中一些)的蛋白质性质,因为以前在生命系统中没有已知用于长距离电子传输的蛋白质线。
更新日期:2020-08-01
down
wechat
bug