Skip to main content
Log in

Electric Cables of Living Cells. II. Bacterial Electron Conductors

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The concept of “electric cables” involved in bioenergetic processes of a living cell was proposed half a century ago [Skulachev, V. P. (1971) Curr. Top. Bioenerg., Elsevier, pp. 127-190]. For many decades, only cell membrane structures have been considered as probable pathways for the electric current, namely, for the transfer of transmembrane electrochemical potential. However, the last ten to fifteen years have brought the discovery of bacterial “electric cables” of a new type. In 2005, “nanowires” conducting electric current over distances of tens of micrometers were discovered in metal- and sulphate-reducing bacteria [Reguera, G. et al. (2005) Nature, 435, pp. 1098-1101]. The next five years have witnessed the discovery of microbial electric currents over centimeter distances [Nielsen, L. P. et al. (2010) Nature, 463, 1071-1074]. This new group of bacteria allowing electric currents to flow over macroscopic distances was later called cable bacteria. Nanowires and conductive structures of cable bacteria serve to solve a special problem of membrane bioenergetics: they connect two redox half-reactions. In other words, unlike membrane “cables”, their function is electron transfer in the course of oxidative phosphorylation for the generation of membrane energy rather than of the end-product. The most surprising is the protein nature of these cables (at least of some of them) indicated by recent data, since no protein wires for the long-distance electron transport had been previously known in living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

ΔµH+ :

transmembrane proton electrochemical potential

ETC:

electron transport chain

MLC:

metal-like conductivity

SEC:

superexchange conductivity

REFERENCES

  1. Skulachev, V. P. (1971) Energy transformations in the respiratory chain, Curr. Top. Bioenerg., Elsevier, pp. 127-190.

  2. Skulachev, V. P. (1980) Integrating functions of biomebranes. Problems of lateral transport of energy, metabolites and electrons, Biochim. Biophys. Acta, 604, 297-320.

    Article  CAS  PubMed  Google Scholar 

  3. Ptushenko, V. V. (2020) Electric cables of living cells. I. Energy transfer along coupling membranes, Biochemistry (Moscow), 85, 820-832, doi: https://doi.org/10.1134/S000629792007010X.

    Article  CAS  Google Scholar 

  4. Minagawa, J. (2016) A supercomplex of cytochrome bf and photosystem I for cyclic electron flow, in Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling (Cramer, W. A., and Kallas, T., eds) Springer, pp. 453-462.

  5. Dumas, L., Chazaux, M., Peltier, G., Johnson, X., and Alric, J. (2016) Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow, Photosynth. Res., 129, 307-320.

    Article  CAS  PubMed  Google Scholar 

  6. Ptushenko, V. V., Cherepanov, D. A., Krishtalik, L. I., and Semenov, A. Y. (2008) Semicontinuum electrostatic calculations of redox potentials in photosystem I, Photosynth. Res., 97, 55-74.

    Article  CAS  PubMed  Google Scholar 

  7. Ptushenko, V. V., and Krishtalik, L. I. (2018) Reorganization energies of the electron transfer reactions involving quinones in the reaction center of Rhodobacter sphaeroides, Photosynth. Res., 138, 167-175.

    Article  CAS  PubMed  Google Scholar 

  8. Gralnick, J. A., and Newman, D. K. (2007) Extracellular respiration, Mol. Microbiol., 65, 1-11.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Turick, C. E., Tisa, L. S., and Caccavo, F., Jr. (2002) Melanin production and use as a soluble electron shuttle for Fe (III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY, Appl. Environ. Microbiol., 68, 2436-2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R. (2005) Extracellular electron transfer via microbial nanowires, Nature, 435, 1098-1101.

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., and Sayama, M. (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment, Nature, 463, 1071-1074.

    Article  CAS  PubMed  Google Scholar 

  12. Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N., and Nielsen, L. P. (2012) Filamentous bacteria transport electrons over centimetre distances, Nature, 491, 218.

    Article  CAS  PubMed  Google Scholar 

  13. Schauer, R., Risgaard-Petersen, N., Kjeldsen, K. U., Bjerg, J. J. T., Jørgensen, B. B., Schramm, A., and Nielsen, L. P. (2014) Succession of cable bacteria and electric currents in marine sediment, ISME J., 8, 1314-1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H., and Fredrickson, J. K. (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proc. Natl. Acad. Sci. USA, 103, 11358-11363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filman, D. J., Marino, S. F., Ward, J. E., Yang, L., Mester, Z., Bullitt, E., Lovley, D. R., and Strauss, M. (2019) Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire, Commun. Biol., 2, 219, doi: https://doi.org/10.1038/s42003-019-0448-9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tan, Y., Adhikari, R. Y., Malvankar, N. S., Ward, J. E., Woodard, T. L., Nevin, K. P., and Lovley, D. R. (2017) Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity, mBio, 8, e02203-6, doi: https://doi.org/10.1128/mBio.02203-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adhikari, R. Y., Malvankar, N. S., Tuominen, M. T., and Lovley, D. R. (2016) Conductivity of individual Geobacter pili, RSC Adv., 6, 8354-8357.

    Article  CAS  Google Scholar 

  18. Lampa-Pastirk, S., Veazey, J. P., Walsh, K. A., Feliciano, G. T., Steidl, R. J., Tessmer, S. H., and Reguera, G. (2016) Thermally activated charge transport in microbial protein nanowires, Sci. Rep., 6, 23517, doi: https://doi.org/10.1038/srep23517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Potapova, T. V., and Koksharova, O. A. (2020) Filamentous cyanobacteria as a prototype of multicellular organisms, Russ. J. Plant Physiol., 67, 17-30.

    Article  CAS  Google Scholar 

  20. Tan, Y., Adhikari, R. Y., Malvankar, N. S., Pi, S., Ward, J. E., Woodard, T. L., Nevin, K. P., Xia, Q., Tuominen, M. T., and Lovley, D. R. (2016) Synthetic biological protein nanowires with high conductivity, Small, 12, 4481-4485.

    Article  CAS  PubMed  Google Scholar 

  21. El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H., and Gorby, Y. A. (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1, Proc. Natl. Acad. Sci. USA, 107, 18127-18131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sato, M., and Mooney, H. M. (1960) The electrochemical mechanism of sulfide self-potentials, Geophysics, 25, 226-249.

    Article  CAS  Google Scholar 

  23. Bigalke, J., and Grabner, E. W. (1997) The geobattery model – a contribution to large scale electrochemistry, Electrochimica Acta, 42, 3443-3452.

    Article  CAS  Google Scholar 

  24. Naudet, V., and Revil, A. (2005) A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals, Geophys. Res. Lett., 32, doi: https://doi.org/10.1029/2005GL022735.

    Article  Google Scholar 

  25. Dueholm, M. S., Larsen, S., Risgaard-Petersen, N., Nierychlo, M., Schmid, M., Bøggild, A., van de Vossenberg, J., Geelhoed, J. S., Meysman, F. J. R., Wagner, M., Nielsen, P. H., Nielsen, L. P., and Schramm, A. (2019) On the evolution and physiology of cable bacteria, Proc. Natl. Acad. Sci. USA, 116, 19116-19125.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cornelissen, R., Bøggild, A., Thiruvallur Eachambadi, R., Koning, R. I., Kremer, A., Hidalgo-Martinez, S., Zetsche, E.-M., Damgaard, L. R., Bonné, R., Drijkoningen, J., Geelhoed, J. S., Boesen, T., Boschker, H. T. S., Valcke, R., Nielsen, L. P., D’Haen, J., Manca, J. V., and Meysman, F. J. R. (2018) The cell envelope structure of cable bacteria, Front. Microbiol., 9, 3044.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Meysman, F. J. R., Cornelissen, R., Trashin, S., Bonné, R., Martinez, S. H., van der Veen, J., Blom, C. J., Karman, C., Hou, J.-L., Thiruvallur Eachambadi, R., Geelhoed, J. S., De Wael, K., Beaumont, H. J. E., Bart Cleuren, B., Valcke, R., van der Zant, H. S. J., Boschker, H. T. S., and Manca, J. V. (2019) A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria, Nat.Commun., 10, 1-8.

    Article  CAS  Google Scholar 

  28. Bonné, R., Hou, J.-L., Hustings, J., Meert, M., Hidalgo-Martinez, S., Cornelissen, R., D’Haen, J., Thijs, S., Vangronsveld, J., Valcke, R., Cleuren, B., Meysman, F. J. R., and Manca, J. V. (2019) Cable bacteria as long-range biological semiconductors, arXiv Preprint: 191206224.

  29. Trojan, D., Schreiber, L., Bjerg, J. T., Bøggild, A., Yang, T., Kjeldsen, K. U., and Schramm, A. (2016) A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema, Syst. Appl. Microbiol., 39, 297-306.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parge, H. E., Forest, K. T., Hickey, M. J., Christensen, D. A., Getzoff, E. D., and Tainer, J. A. (1995) Structure of the fibre-forming protein pilin at 2.6 Å resolution, Nature, 378, 32-38.

    Article  CAS  PubMed  Google Scholar 

  31. Craig, L., Taylor, R. K., Pique, M. E., Adair, B. D., Arvai, A. S., Singh, M., Lloyd, S. J., Shin, D. S., Getzoff, E. D., Yeager, M., Forest, K. T., and Tainer, J. A. (2003) Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin, Mol. Cell, 11, 1139-1150.

    Article  CAS  PubMed  Google Scholar 

  32. Mehta, T., Coppi, M. V., Childers, S. E., and Lovley, D. R. (2005) Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens, Appl. Environ. Microbiol., 71, 8634-8641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leang, C., Qian, X., Mester, T., and Lovley, D. R. (2010) Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens, Appl. Environ. Microbiol., 76, 4080-4084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inoue, K., Leang, C., Franks, A. E., Woodard, T. L., Nevin, K. P., and Lovley, D. R. (2011) Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens, Environ. Microbiol. Rep., 3, 211-217.

    Article  CAS  PubMed  Google Scholar 

  35. Qian, X., Reguera, G., Mester, T., and Lovley, D. R. (2007) Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins, FEMS Microbiol. Lett., 277, 21-27.

    Article  CAS  PubMed  Google Scholar 

  36. Shi, L., Richardson, D. J., Wang, Z., Kerisit, S. N., Rosso, K. M., Zachara, J. M., and Fredrickson, J. K. (2009) The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer, Environ. Microbiol. Rep., 1, 220-227.

    Article  CAS  PubMed  Google Scholar 

  37. Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., Reed, S. B., Romine, M. F., Saffarini, D. A., Shi, L., Gorby, Y. A., Golbeck, J. H., and El-Naggar, M. Y. (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components, Proc. Natl. Acad. Sci. USA, 111, 12883-12888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malvankar, N. S., Vargas, M., Nevin, K. P., Franks, A. E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S. F., Johnson, J. P., Rotello, V. M., Tuominen, M. T., and Lovley, D. R. (2011) Tunable metallic-like conductivity in microbial nanowire networks, Nat. Nanotechnol., 6, 573-579.

    Article  PubMed  Google Scholar 

  39. Strycharz-Glaven, S. M., Snider, R. M., Guiseppi-Elie, A., and Tender, L. M. (2011) On the electrical conductivity of microbial nanowires and biofilms, Energy Environ. Sci., 4, 4366-4379.

    Article  CAS  Google Scholar 

  40. Boesen, T., and Nielsen, L. P. (2013) Molecular dissection of bacterial nanowires, mBio, 4, e00270-13, doi: https://doi.org/10.1128/mBio.00270-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vargas, M., Malvankar, N. S., Tremblay, P.-L., Leang, C., Smith, J. A., Patel, P., Snoeyenbos-West, O., Nevin, K. P., and Lovley, D. R. (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens, mBio, 4, e00105-13, doi: https://doi.org/10.1128/mBio.00105-13.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cosert, K. M., Castro-Forero, A., Steidl, R. J., Worden, R. M., and Reguera, G. (2019) Bottom-up fabrication of protein nanowires via controlled self-assembly of recombinant Geobacter pilins, mBio, 10, e02721-19, doi: https://doi.org/10.1128/mBio.02721-19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Holmes, D. E., Chaudhuri, S. K., Nevin, K. P., Mehta, T., Methé, B. A., Liu, A., Ward, J. E., Woodard, T. L., Webster, J., and Lovley, D. R. (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens, Environ. Microbiol., 8, 1805-1815.

    Article  CAS  PubMed  Google Scholar 

  44. Malvankar, N. S., Tuominen, M. T., and Lovley, D. R. (2012) Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens, Energy Environ. Sci., 5, 8651-8659.

    Article  CAS  Google Scholar 

  45. Polizzi, N. F., Skourtis, S. S., and Beratan, D. N. (2012) Physical constraints on charge transport through bacterial nanowires, Faraday Discuss., 155, 43-61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, F., Gu, Y., O’Brien, J. P., Sophia, M. Y., Yalcin, S. E., Srikanth, V., Shen, C., Vu, D., Ing, N. L., Hochbaum, A. I., Egelman, E. H., and Malvankar, N. S. (2019) Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers, Cell, 177, 361-369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bjerg, J. T., Boschker, H. T. S., Larsen, S., Berry, D., Schmid, M., Millo, D., Tataru, P., Meysman, F. J. R., Wagner, M., Nielsen, L. P., and Schramm, A. (2018) Long-distance electron transport in individual, living cable bacteria, Proc. Natl. Acad. Sci. USA, 115, 5786-5791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chailakhyan, L. M., Glagolev, A. N., Glagoleva, T. N., Murvanidze, G. V., Potapova, T. V., and Skulachev, V. P. (1982) Intercellular power transmission along trichomes of cyanobacteria, Biochim. Biophys. Acta, 679, 60-67.

    Article  CAS  Google Scholar 

  49. Ishii, S., Kosaka, T., Hori, K., Hotta, Y., and Watanabe, K. (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus, Appl. Environ. Microbiol., 71, 7838-7845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S., and Lovley, D. R. (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria, Science, 330, 1413-1415.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. F. O. Kasparinsky, Dr. D. R. Lovley, Dr. J. V. Manca, Dr. J. Oemig, and Dr. M. Strauss for provided figures and to anonymous reviewers for valuable comments that allowed improving the work.

Funding

This study was supported by the Lomonosov Moscow State University (state program no. AAAA-A17-117120570011-4) and by the Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (state program no. 01201253314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ptushenko.

Ethics declarations

The author declares no conflict of interest in financial or any other sphere. This article does not contain description of studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptushenko, V.V. Electric Cables of Living Cells. II. Bacterial Electron Conductors. Biochemistry Moscow 85, 955–965 (2020). https://doi.org/10.1134/S0006297920080118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920080118

Keywords

Navigation