当前位置: X-MOL 学术Korean J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid Pd38 nanocluster/Ni(OH)2-graphene catalyst for enhanced HCOOH dehydrogenation: First principles approach
Korean Journal of Chemical Engineering ( IF 2.7 ) Pub Date : 2020-08-01 , DOI: 10.1007/s11814-020-0606-2
Dong Yun Shin , Min-Su Kim , Sukho Kang , Jeong An Kwon , Thillai Govindaraja , Chang Won Yoon , Dong-Hee Lim

Hydrogen energy is a potential next-generation energy source for fossil fuel replacement. The development of high-efficiency materials and catalysts for storage and transportation of hydrogen energy must be achieved to realize hydrogen economy. Recently, catalyst systems such as Pd nanoclusters (Pd NCs) supported on nickel hydroxide (Ni(OH)2) have been reported to have advantages, including effective suppression of CO production and efficiency enhancement of HCOOH dehydrogenation. However, the reaction mechanism and multi-metallic interface system design of such systems have not been elucidated. Therefore, various Ni(OH)2 surfaces supported on a graphene system were designed through density functional theory calculations, and the support material was combined with Pd38NC (Pd38NC/Ni(OH)2-G). Subsequently, the adsorption behavior of HCOOH dehydrogenation intermediates was analyzed. We found a new adsorption configuration in which HCOOH* (where * and a single underline indicates the adsorbed species and adsorbed atom, respectively) was adsorbed in a more stable manner (adsorption energy, Eads= −1.22eV) on the system than HCOOH* (Eads=−1.10eV) owing to the presence of Ni(OH)2-G. This affected the next step in HCOOH dehydrogenation, i.e., formation of HCOO* species, and showed a positive effect on the HCOOH dehydrogenation. To fundamentally understand this phenomenon, electronic structure (d-band center and density of states) and stability (vacancy formation energy) analyses were performed.

中文翻译:

用于增强 HCOOH 脱氢的混合 Pd38 纳米团簇/Ni(OH)2-石墨烯催化剂:第一原理方法

氢能是替代化石燃料的潜在下一代能源。要实现氢经济,必须开发用于氢能储存和运输的高效材料和催化剂。最近,据报道,负载在氢氧化镍 (Ni(OH)2) 上的 Pd 纳米团簇 (Pd NCs) 等催化剂体系具有优势,包括有效抑制 CO 产生和提高 HCOOH 脱氢效率。然而,此类系统的反应机理和多金属界面系统设计尚未阐明。因此,通过密度泛函理论计算设计了支撑在石墨烯系统上的各种 Ni(OH)2 表面,并将支撑材料与 Pd38NC (Pd38NC/Ni(OH)2-G) 结合。随后,分析了HCOOH脱氢中间体的吸附行为。我们发现了一种新的吸附构型,其中 HCOOH*(其中 * 和单下划线分别表示吸附的物质和吸附的原子)以比 HCOOH* 更稳定的方式(吸附能,Eads= -1.22eV)吸附在系统上(Eads=-1.10eV) 由于 Ni(OH)2-G 的存在。这影响了 HCOOH 脱氢的下一步,即 HCOO* 物质的形成,并显示出对 HCOOH 脱氢的积极影响。为了从根本上理解这种现象,进行了电子结构(d 带中心和态密度)和稳定性(空位形成能)分析。我们发现了一种新的吸附构型,其中 HCOOH*(其中 * 和单下划线分别表示吸附的物质和吸附的原子)以比 HCOOH* 更稳定的方式(吸附能,Eads= -1.22eV)吸附在系统上(Eads=-1.10eV) 由于 Ni(OH)2-G 的存在。这影响了 HCOOH 脱氢的下一步,即 HCOO* 物质的形成,并显示出对 HCOOH 脱氢的积极影响。为了从根本上理解这种现象,进行了电子结构(d 带中心和态密度)和稳定性(空位形成能)分析。我们发现了一种新的吸附构型,其中 HCOOH*(其中 * 和单个下划线分别表示吸附的物质和吸附的原子)以比 HCOOH* 更稳定的方式(吸附能,Eads= -1.22eV)吸附在系统上(Eads=-1.10eV) 由于 Ni(OH)2-G 的存在。这影响了 HCOOH 脱氢的下一步,即 HCOO* 物质的形成,并显示出对 HCOOH 脱氢的积极影响。为了从根本上理解这种现象,进行了电子结构(d 带中心和态密度)和稳定性(空位形成能)分析。HCOO* 物质的形成,并显示出对 HCOOH 脱氢的积极影响。为了从根本上理解这种现象,进行了电子结构(d 带中心和态密度)和稳定性(空位形成能)分析。HCOO* 物种的形成,并显示出对 HCOOH 脱氢的积极影响。为了从根本上理解这种现象,进行了电子结构(d 带中心和态密度)和稳定性(空位形成能)分析。
更新日期:2020-08-01
down
wechat
bug