Skip to main content

Advertisement

Log in

Hybrid Pd38 nanocluster/Ni(OH)2-graphene catalyst for enhanced HCOOH dehydrogenation: First principles approach

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrogen energy is a potential next-generation energy source for fossil fuel replacement. The development of high-efficiency materials and catalysts for storage and transportation of hydrogen energy must be achieved to realize hydrogen economy. Recently, catalyst systems such as Pd nanoclusters (Pd NCs) supported on nickel hydroxide (Ni(OH)2) have been reported to have advantages, including effective suppression of CO production and efficiency enhancement of HCOOH dehydrogenation. However, the reaction mechanism and multi-metallic interface system design of such systems have not been elucidated. Therefore, various Ni(OH)2 surfaces supported on a graphene system were designed through density functional theory calculations, and the support material was combined with Pd38NC (Pd38NC/Ni(OH)2-G). Subsequently, the adsorption behavior of HCOOH dehydrogenation intermediates was analyzed. We found a new adsorption configuration in which HCOOH* (where * and a single underline indicates the adsorbed species and adsorbed atom, respectively) was adsorbed in a more stable manner (adsorption energy, Eads= −1.22eV) on the system than HCOOH* (Eads=−1.10eV) owing to the presence of Ni(OH)2-G. This affected the next step in HCOOH dehydrogenation, i.e., formation of HCOO* species, and showed a positive effect on the HCOOH dehydrogenation. To fundamentally understand this phenomenon, electronic structure (d-band center and density of states) and stability (vacancy formation energy) analyses were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Yang, A. Sudik, C. Wolverton and D. J. Siegel, Chem. Soc. Rev., 39, 656 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. M. Grasemann and G. Laurenczy, Energy Environ. Sci., 5, 8171 (2012).

    Article  CAS  Google Scholar 

  3. A. K. Singh, S. Singh and A. Kumar, Catal. Sci. Technol., 6, 12 (2016).

    Article  Google Scholar 

  4. A. Boddien, B. Loges, F. Gärtner, C. Torborg, K. Fumino, H. Junge, R. Ludwig and M. Beller, J. Am. Chem. Soc., 132, 8924 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. D. Mellmann, P. Sponholz, H. Junge and M. Beller, Chem. Soc. Rev., 45, 3954 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. J. A. Herron, J. Scaranto, P. Ferrin, S. Li and M. Mavrikakis, ACS Catal., 4, 4434 (2014).

    Article  CAS  Google Scholar 

  7. D. A. Bulushev, S. Beloshapkin and J. R. H. Ross, Catal. Today, 154, 7 (2010).

    Article  CAS  Google Scholar 

  8. M. Hattori, H. Einaga, T. Daio and M. Tsuji, J. Mater. Chem. A, 3, 4453 (2015).

    Article  CAS  Google Scholar 

  9. Y. Huang, X. Zhou, M. Yin, C. Liu and W. Xing, Chem. Mater., 22, 5122 (2010).

    Article  CAS  Google Scholar 

  10. G. Chen, Y. Zhao, G. Fu, P. N. Duchesne, L. Gu, Y. Zheng, X. Weng, M. Chen, P. Zhang, C.-W. Pao, J.-F. Lee and N. Zheng, Science, 344, 495 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic and N. M. Markovic, Science, 334, 1256 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic and N. M. Markovic, Nat. Mater., 11, 550 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. W. Huang, H. Wang, J. Zhou, J. Wang, P. N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S.-T. Lee and H. Dai, Nat. Commun., 6, 10035 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. J.-M. Yan, Z.-L. Wang, L. Gu, S.-J. Li, H.-L. Wang, W.-T. Zheng and Q. Jiang, Adv. Energy Mater., 5, 1500107 (2015).

    Article  CAS  Google Scholar 

  15. Q. Sun, N. Wang, Q. Bing, R. Si, J. Liu, R. Bai, P. Zhang, M. Jia and J. Yu, Chem., 3, 477 (2017).

    Article  CAS  Google Scholar 

  16. R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V. V. Viswanathan, S. Park, I. A. Aksay, Y. Lin, Y. Wang and J. Liu, J. Am. Chem. Soc., 133, 2541 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. R. I. Jafri, N. Rajalakshmi and S. Ramaprabhu, J. Mater. Chem., 20, 7114 (2010).

    Article  CAS  Google Scholar 

  18. L. Dong, R. R. S. Gari, Z. Li, M. M. Craig and S. Hou, Carbon, 48, 781 (2010).

    Article  CAS  Google Scholar 

  19. M. J. Allen, V. C. Tung and R. B. Kaner, Chem. Rev., 110, 132 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. D.-H. Lim, A. S. Negreira and J. Wilcox, J. Phys. Chem. C, 115, 8961 (2011).

    Article  CAS  Google Scholar 

  22. D.-H. Lim and J. Wilcox, J. Phys. Chem. C, 115, 22742 (2011).

    Article  CAS  Google Scholar 

  23. D.-H. Lim, J. H. Jo, D. Y. Shin, J. Wilcox, H. C. Ham and S. W. Nam, Nanoscale, 6, 5087 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. D. Y. Shin, M.-S. Kim, J. A. Kwon, Y.-J. Shin, C. W. Yoon and D.-H. Lim, J. Phys. Chem. C, 123, 1539 (2019).

    Article  CAS  Google Scholar 

  25. H. Wang, H. S. Casalongue, Y. Liang and H. Dai, J. Am. Chem. Soc., 132, 7472 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. G. Kresse and J. Furthmüller, Phys. Rev. B, 54, 11169 (1996).

    Article  CAS  Google Scholar 

  27. G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999).

    Article  CAS  Google Scholar 

  28. P. E. Blöchl, Phys. Rev. B, 50, 17953 (1994).

    Article  Google Scholar 

  29. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13, 5188 (1976).

    Article  Google Scholar 

  31. M. Methfessel and A. T. Paxton, Phys. Rev. B, 40, 3616 (1989).

    Article  CAS  Google Scholar 

  32. A. J. Tkalych, K. Yu and E. A. Carter, J. Phys. Chem. C, 119, 24315 (2015).

    Article  CAS  Google Scholar 

  33. S. Grimme, J. Comput. Chem., 27, 1787 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. M. Sakurai, K. Watanabe, K. Sumiyama and K. Suzuki, J. Chem. Phys., 111, 235 (1999).

    Article  CAS  Google Scholar 

  35. K. G. Dyall, Theoretical Chemistry Accounts, 117, 459 (2007).

    Article  CAS  Google Scholar 

  36. J. G. Howalt, T. Bligaard, J. Rossmeisl and T. Vegge, Phys. Chem. Chem. Phys., 15, 7785 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. V. Y. Kazimirov, M. B. Smirnov, L. Bourgeois, L. Guerlou-Demourgues, L. Servant, A. M. Balagurov, I. Natkaniec, N. R. Khasanova and E. V. Antipov, Solid State Ionics, 181, 1764 (2010).

    Article  CAS  Google Scholar 

  38. G. Mukhopadhyay and H. Behera, arXiv:1306.0809 (2013).

  39. J. Yan, Q. Wang, T. Wei and Z. Fan, Adv. Energy Mater., 4, 1300816 (2014).

    Article  CAS  Google Scholar 

  40. Z. Wu, X.-L. Huang, Z.-L. Wang, J.-J. Xu, H.-G. Wang and X.-B. Zhang, Sci. Rep., 4, 3669 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Y. Qi, Y. Liu, R. Zhu, Q. Wang, Y. Luo, C. Zhu and Y. Lyu, New J. Chem., 43, 3091 (2019).

    Article  CAS  Google Scholar 

  42. J. S. Yoo, F. Abild-Pedersen, J. K. Nørskov and F. Studt, ACS Catal., 4, 1226 (2014).

    Article  CAS  Google Scholar 

  43. P. Wang, S. N. Steinmann, G. Fu, C. Michel and P. Sautet, ACS Catal., 7, 1955 (2017).

    Article  CAS  Google Scholar 

  44. H. Xu, W. Chu, W. Sun, C. Jiang and Z. Liu, RSC Adv., 6, 96545 (2016).

    Article  CAS  Google Scholar 

  45. B. Hammer and J. K. Nørskov, Surf. Sci., 343, 211 (1995).

    Article  CAS  Google Scholar 

  46. B. Hammer and J. K. Nørskov, Adv. Catal., 45, 71 (2000).

    CAS  Google Scholar 

  47. A. Vojvodic, J. Nørskov and F. Abild-Pedersen, Top. Catal., 57, 25 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current work is supported by Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2015M1A2A2074688).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Won Yoon or Dong-Hee Lim.

Additional information

Notes

The authors declare no competing financial interests.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.Y., Kim, MS., Kang, S. et al. Hybrid Pd38 nanocluster/Ni(OH)2-graphene catalyst for enhanced HCOOH dehydrogenation: First principles approach. Korean J. Chem. Eng. 37, 1411–1418 (2020). https://doi.org/10.1007/s11814-020-0606-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0606-2

Keywords

Navigation