当前位置: X-MOL 学术Heat Mass Transfer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b
Heat and Mass Transfer ( IF 1.7 ) Pub Date : 2020-08-06 , DOI: 10.1007/s00231-020-02922-w
Sandipan Deb , Sagnik Pal , Dipak Chandra Das , Mantu Das , Ajoy Kumar Das , Ranjan Das

Experiments were performed to demonstrate the impact of surface wettability on the nucleate boiling heat transfer of Silicon Dioxide (SiO2) Thin Film (TF) nanocoated surfaces using the saturated refrigerant R-141b at atmospheric pressure. Six numbers of circular flat type test sections of copper material having thickness of 0 nm (plain surface), 125 nm, 250 nm 375 nm, 500 nm and 625 nm surface coating thicknesses were fabricated with the Sol-Gel method followed by spin coating process and characterized through atomic force microscope (AFM), field emission scanning electron microscopy (FE-SEM), Telescope Micro-Goniometer (TMG), and Energy – Dispersive X-Ray spectroscopy (EDX) etc. The experimental results from plain and nanocoated copper surfaces were validated with well-established correlations to predict the pool boiling curve. In comparisons with plain surface, results obtained from other surfaces show that the reduction of wall superheat and additional improvement of heat transfer coefficient (HTC), for all TF nanocoated surfaces at atmospheric pressure. It has been revealed that surface wettability improves the vapor bubble departure radius for hydrophilic surfaces and decreases the frequency of bubble emissions.



中文翻译:

制冷剂R-141b在池沸腾传热过程中TF纳米涂层表面的表面润湿性变化

进行实验以证明表面润湿性对二氧化硅(SiO 2)的核沸腾传热的影响。)在大气压下使用饱和制冷剂R-141b进行薄膜(TF)纳米涂层的表面。用Sol-Gel法接着旋涂法制造六层圆形的铜材料测试表面,其厚度分别为0 nm(纯表面),125 nm,250 nm,375 nm,500 nm和625 nm。并通过原子力显微镜(AFM),场发射扫描电子显微镜(FE-SEM),望远镜微角度仪(TMG)和能量色散X射线光谱仪(EDX)等进行表征。实验结果来自纯铜和纳米涂层铜用公认的相关性对表面进行验证,以预测池沸腾曲线。与平整表面相比,从其他表面获得的结果表明,在大气压下,所有TF纳米涂层表面的壁过热降低和传热系数(HTC)进一步提高。已经发现,表面润湿性改善了亲水性表面的蒸气气泡离开半径,并降低了气泡排放的频率。

更新日期:2020-08-06
down
wechat
bug