Skip to main content
Log in

Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Experiments were performed to demonstrate the impact of surface wettability on the nucleate boiling heat transfer of Silicon Dioxide (SiO2) Thin Film (TF) nanocoated surfaces using the saturated refrigerant R-141b at atmospheric pressure. Six numbers of circular flat type test sections of copper material having thickness of 0 nm (plain surface), 125 nm, 250 nm 375 nm, 500 nm and 625 nm surface coating thicknesses were fabricated with the Sol-Gel method followed by spin coating process and characterized through atomic force microscope (AFM), field emission scanning electron microscopy (FE-SEM), Telescope Micro-Goniometer (TMG), and Energy – Dispersive X-Ray spectroscopy (EDX) etc. The experimental results from plain and nanocoated copper surfaces were validated with well-established correlations to predict the pool boiling curve. In comparisons with plain surface, results obtained from other surfaces show that the reduction of wall superheat and additional improvement of heat transfer coefficient (HTC), for all TF nanocoated surfaces at atmospheric pressure. It has been revealed that surface wettability improves the vapor bubble departure radius for hydrophilic surfaces and decreases the frequency of bubble emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Webb RL, Kim NY (2005) Enhanced heat transfer. Taylor and Francis, NY.

  2. Stutz B, Morceli CHS, de Fatima da Silva M, Cioulachtjian S, Bonjour J (2011) Influence of nanoparticle surface coating on pool boiling. Exp Therm Fluid Sci 35:1239–1249

    Article  Google Scholar 

  3. Ray M, Deb S, Bhaumik S (2016) Pool boiling heat transfer of refrigerant R-134a on TiO2 nano wire arrays surface. App Therm Engg 107:1294–1303

    Article  Google Scholar 

  4. Phan HT, Caney N, Marty P, Colasson S, Gavillet J (2009) Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Transf 52:5459–5471

    Article  Google Scholar 

  5. Trisaksri V, Wongwises S (2009) Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. Int J Heat Mass Transf 52:1582–1588

    Article  Google Scholar 

  6. Kedzierski MA (2012) Effect of diamond nanolubricant on R134a pool boiling heat transfer. J Heat Transf 134:051001–051008

    Article  Google Scholar 

  7. Sayahi T, Bahrami M (2016) Investigation on the effect of type and size of nanoparticles and surfactant on pool boiling heat transfer of nanofluids. J Heat Transf 134:031502–031509

    Article  Google Scholar 

  8. Tang Y, Tang B, Li Q, Qing J, Lu L, Chen K (2013) Pool-boiling enhancement by novel metallic nanoporous surface. Exp Therm Fluid Sci 44:194–198

    Article  Google Scholar 

  9. Diao Y, Liu Y, Wang R, Zhao Y, Guo L (2014) Experimental investigation of the Cu/R141b nanofluids on the evaporation/boiling heat transfer characteristics for surface with capillary micro-channels. Heat Mass Transf 50:1261–1274. https://doi.org/10.1007/s00231-014-1325-1

    Article  Google Scholar 

  10. Chang T-B, Wang Z-L (2016) Experimental investigation into effects of ultrasonic vibration on pool boiling heat transfer performance of horizontal low-finned U-tube in TiO2/R141b nanofluid. Heat Mass Transf 52:2381–2390. https://doi.org/10.1007/s00231-015-1746-5

    Article  Google Scholar 

  11. Eid EI, Khalaf-Allah RA, Taher SH, Al-Nagdy AA (2017) An experimental investigation of the effect of the addition of nano aluminum oxide on pool boiling of refrigerant 134A. Heat Mass Transf 53:2597–2607. https://doi.org/10.1007/s00231-017-2010-y

    Article  Google Scholar 

  12. Kim SJ, Bang IC, Buongiorno J, Hu LW (2007) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf 50:4105–4116

    Article  Google Scholar 

  13. Naphon P, Thongjing C (2014) Pool boiling heat transfer characteristics of refrigerant-nanoparticle mixtures. Int Comm Heat Mass Transf 52:84–89

    Article  Google Scholar 

  14. Park K-J, Jung D (2010) Nucleate boiling heat transfer coefficients of R1234yf on plain and low fin surfaces. Int J Refrig 33:553–557

    Article  Google Scholar 

  15. Phan HT, Caney N, Marty P, Colasson S, Gavillet J (2009) Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Transf 52:5459–5471

    Article  Google Scholar 

  16. Phan HT, Caney N, Marty P, Colasson S, Gavillet J (2009) How does surface wettability influence nucleate boiling? Comptes Rendus Mécanique 337:251–259

    Article  Google Scholar 

  17. Coursey JS, Kim J (2008) Nanofluid boiling: the effect of surface wettability. Int J Heat Fluid Flow 29:1577–1585

    Article  Google Scholar 

  18. Godson L, Raja B, Mohan Lal D, Wongwises S (2010) Enhancement of heat transfer using nanofluids – an overview. Renew Sustain Energy Rev 14:629–641

    Article  Google Scholar 

  19. Global Environmental Change Report (GCRP) (1997) A brief analysis. Kyoto Protocol IX:24

    Google Scholar 

  20. Hsieh S-S, Huang G-Z, Tsai H-H (2003) Nucleate pool boiling characteristics from coated tube bundles in saturated R-134a. Int J Heat Mass Transf 46:1223–1239

    Article  Google Scholar 

  21. Scurlock R (1995) Enhanced boiling heat transfer surfaces. Cryogenics 35:233–237

    Article  Google Scholar 

  22. Vemuri S, Kim KJ (2005) Pool boiling of saturated FC-72 on nano-porous surface. Int Comm Heat Mass Transf 32:27–31

    Article  Google Scholar 

  23. Hristov Y, Zhao D, Kenning DBR, Sefiane K, Karayiannis TG (2009) A study of nucleate boiling and critical heat flux with EHD enhancement. Heat Mass Transf 45:999–1017. https://doi.org/10.1007/s00231-007-0286-z

    Article  Google Scholar 

  24. Tehver J, Sui H, Temkina V (1992) Heat transfer and hysteresis phenomena in boiling on porous plasma-sprayed surface. Exp. Therm Fluid Sci 5:714–727

    Article  Google Scholar 

  25. Li C, Wang Z, Wang PI, Peles Y, Koratkar N, Peterson GP (2008) Nanostructured copper interfaces for enhanced boiling. small, 4(8):1084–1088

  26. Kong X, Qi B, Wei J, Li W, Ding J, Zhang Y (2016) Boiling heat transfer enhancement of nanofluids on a smooth surface with agitation. Heat Mass Transf 52:2769–2780. https://doi.org/10.1007/s00231-016-1780-y

    Article  Google Scholar 

  27. Chang J, You S (1997) Enhanced boiling heat transfer from microporous surfaces: effects of a coating composition and method. Int J Heat Mass Transf 40:4449–4460

    Article  Google Scholar 

  28. Li S, Furberg R, Toprak MS, Palm B, Muhammed M (2008) Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv Funct Mater 18:2215–2220

    Article  Google Scholar 

  29. Stutz B, Morceli CHS, Da Silva MDF, Cioulachtjian S, Bonjour J (2011) Influence of nanoparticle surface coating on pool boiling. Exp Therm Fluid Sci 35:1239–1249

    Article  Google Scholar 

  30. Kwark SM, Moreno G, Kumar R, Moon H, You SM (2010) Nanocoating characterization in pool boiling heat transfer of pure water. Int J Heat Mass Transf 53:4579–4587

    Article  Google Scholar 

  31. Hegde RN, Rao SS, Reddy R (2012) Studies on nanoparticle coating due to boiling induced precipitation and its effect on heat transfer enhancement on a vertical cylindrical surface. Exp Therm Fluid Sci 38:229–236

    Article  Google Scholar 

  32. Swain A, Mohanty RL, Das MK (2017) Pool boiling of distilled water over tube bundle with variable heat flux. Heat Mass Transf 53:2487–2495. https://doi.org/10.1007/s00231-017-1997-4

    Article  Google Scholar 

  33. Rajabzadeh Dareh F, Haghshenasfard M, Nasr Esfahany M, Salimi Jazi H (2018) Experimental investigation of time and repeated cycles in nucleate pool boiling of alumina/water nanofluid on polished and machined surfaces. Heat Mass Transf 54:1653–1668. https://doi.org/10.1007/s00231-017-2266-2

    Article  Google Scholar 

  34. Good RJ (1979) Contact angles and the surface free energy of solids. In: Good RJS, Stromberg RR (eds) Surface and colloid science, vol 11. Plenum Press, New York

    Chapter  Google Scholar 

  35. Tong W, Bar-Cohen A, Simon TW, You SM (1990) Contact angle effects on boiling incipience of highly-wetting liquids. Int J Heat Mass Transf 33:91–103

    Article  Google Scholar 

  36. Wang C.H., Dhir V.K. (1991) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. Procs. 28th Natl. Heat Transfer Conf Minneapolis MN USA

  37. Reale E (1973) Measurements of liquid on solid contact angles of refrigerants. In Proc. of the Sixth Symposium on Thermophysical Properties, ASME, New York pp 376–386.

  38. Imadojemu HE, Hong KT, Webb RL (1995) Pool boiling of R-11 refrigerant and water on oxidized enhanced tubes. J Enhanc Heat Transf 2(3)

  39. Reale F, Cannaviello M (1976) Wetting and surface properties of refrigerants to be used in heat pipes. hepi 2:773–792

  40. Carey VP, Phenomena LVPC (1992) An Introduction to the Thermophysics of vaporization and condensation in Heat Transfer Equipment: An Introduction to the Thermophysics of Vaporization & Condensation in Heat Transfer Equipment

  41. Woodruff DP (1973) The solid–liquid interface. Cambridge University Press, Cambridge, UK, ISBN 10: 0521201233ISBN 13: 9780521201230.

  42. Faghri A (1995) Heat pipe science and technology. Global Digital Press

  43. Hong KT, Imadojemu H, Webb RL (1994) Effects of oxidation and surface roughness on contact angle. Exp Them Fluid Sci 8(4):279–285

  44. Marmur A (1996) Equilibrium contact angles: theory and measurement. Colloids Surf A: Physicochem Eng Asp. Procs. 1995 69th Annual Colloid and Surface Science Symp 116:55–61

    Article  Google Scholar 

  45. Neumann AWG, Good RJ (1979) Techniques of measuring contact. In: Good RJ, Stromberg RR (eds) Surface and colloid science. Plenum Press, New York

    Google Scholar 

  46. Y. Yuan; T.R. Lee (2013) Contact angle and wetting properties, G. Bracco, B. Holst (eds.), Surface science techniques. Springer Series in Surface Sciences 51 Springer-Verlag Berlin, Chap. 1 Doi https://doi.org/10.1007/978-3-642-34243-1_1

  47. Bateni A, Susnar SS, Amirfazli A, Neumann AW (2003) A high accuracy polynomial fitting approach to determine contact angles. Colloids Surf A: Physicochem Eng Asp 219:215–231

    Article  Google Scholar 

  48. Sobolev VD, Starov VM, Velarde MG (2003) On the accuracy of measuring small contact angles by the sessile drop method. Colloid J Russ Acad Sci: Kolloidnyi Zhurnal 65:611–614

    Google Scholar 

  49. Yang M-W, Lin S-Y (2003) A method for correcting the contact angle from the θ/2 method. Colloids Surf A: Physicochem Eng Asp 220:199–210

    Article  Google Scholar 

  50. NIST, (2018) Thermophysical properties of fluid systems. https://webbook.nist.gov/chemistry/fluid/

  51. Singh SK, Khandekar S, Pratap D, Anantha Ramakrishna S (2013) Wetting dynamics and evaporation of sessile droplets on nano-porous alumina surfaces. Colloids Surf A: Physicochem Eng Asp 432:71–81

    Article  Google Scholar 

  52. Zhang BJ, Park J, Kim KJ (2013) Augmented boiling heat transfer on the wetting-modified three dimensionally-interconnected alumina nano porous surfaces in aqueous polymeric surfactants. Int J Heat Mass Transf 63:224–232

    Article  Google Scholar 

  53. I. Newton (1929) The mathematical beginnings of natural philosophy optics. Opt Lect (Sel Top) Leningrad 66–71

  54. Schultz R, Cole R (1979) Uncertainty analysis in boiling nucleation. AIChE Symp Ser 75:32–38

    Google Scholar 

  55. Wayner Jr, PC (1999) Intermolecular forces in phase‐change heat transfer: 1998 Kern award review. AIChE journal 45(10):2055–2068

  56. Demiray F, Kim J (2004) Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling. Int J Heat Mass Transf 47:3257–3268

    Article  Google Scholar 

  57. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids. Trans ASME 74:969

    Google Scholar 

  58. Cooper MG (1984) Saturation nucleate pool boiling-a simple correlation. In IChemE Symp Ser 86:786

  59. Deb S, Dey P (2017) Prediction of pool boiling heat transfer coefficients of refrigerant R-141b on nanocoated surfaces using artificial neural network. In Proceedings of the 24 th National and 2 nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017). Begel House Inc.

  60. Zhang S, Ali N (Eds.) (2007) Nanocomposite thin films and coatings: processing, properties and performance. Imperial college press

Download references

Acknowledgements

The authors express their hearty thanks to Physics Lab, NIT Agartala, India for SiO2 thin film growth and roughness measurement test by AFM of all test surfaces. Thanks are also due to IIT Patna, India for providing microscopic contact angle measurement, and SiO2 thin film nanocoating characterization of the test surfaces by FE-SEM and EDX. Authors extended their thanks to the reviewers for their valuable suggestion which helps to enhance the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagnik Pal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, S., Pal, S., Das, D.C. et al. Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b. Heat Mass Transfer 56, 3273–3287 (2020). https://doi.org/10.1007/s00231-020-02922-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02922-w

Keywords

Navigation