当前位置: X-MOL 学术Symmetry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on Stress Characteristics of Segment Structure during the Construction of the Large-Diameter Shield Tunnel and Cross-Passage
Symmetry ( IF 2.940 ) Pub Date : 2020-07-28 , DOI: 10.3390/sym12081246
Zhongsheng Tan , Zonglin Li , Wei Tang , Xueying Chen , Junmeng Duan

With the intensive development of China’s high-speed railway network and intercity railway network, the construction of the large-diameter shield tunnels and cross-passages is gradually increasing. The construction of large diameter shield tunnels and the excavation of cross-passages puts forward higher requirements for the stability and safety of segment structure. Based on the Wangjing tunnel project, this paper studies the segment displacement and mechanical response of the shield tunnel with a diameter of 10.5 m in the process of shield construction and cross-passage construction. The results show that during the construction of large diameter shield tunnels, the vault and invert produce inward displacement, the invert uplift usually is more severe than the vault settlement, and the arch waist on both sides produces outward displacement. Near the segment K (capping block), the mechanical performance of the segment is close to that of the hinge or chain rod, which can only effectively transmit the axial force but cannot resist the bending moment and shear force. During construction of the cross-passage, the maximum deformation and stress of shield tunnel segment are symmetrically located at the interface of the main tunnel and cross-passage. The upper and lower edges of the segment at the interface tend to change from compression to tension. At the same time, the steel bars on the inside and outside of the segment vault and the arch waist change from compressive stress to tensile stress, which can easily lead to segment damage, so these positions can be reinforced by erecting section steel frames before construction.

中文翻译:

大直径盾构隧道及横穿通道施工中管片结构受力特性研究

随着我国高速铁路网和城际铁路网的集约化发展,大口径盾构隧道和交叉通道的建设逐渐增多。大直径盾构隧道的建设和交叉通道的开挖,对管片结构的稳定性和安全性提出了更高的要求。本文以望京隧道工程为背景,研究了直径为10.5 m的盾构隧道在盾构施工和跨通道施工过程中的管片位移和力学响应。结果表明,在大直径盾构隧道施工过程中,拱顶和内底产生向内位移,内底隆起通常比拱顶沉降更严重,两侧拱腰产生外向位移。在节段K(压盖块)附近,节段的机械性能与铰链或链杆接近,只能有效传递轴向力而不能抵抗弯矩和剪力。隧道施工过程中,盾构隧道管片的最大变形和应力对称地位于主隧道与隧道的交界面处。界面处段的上边缘和下边缘趋于从压缩变为拉伸。同时,管片拱顶内外及拱腰处的钢筋由压应力变为拉应力,容易造成管片损坏,因此在施工前可通过架设型钢框架对这些部位进行加固。 . 节段的机械性能接近于铰链或链杆,只能有效传递轴向力而不能抵抗弯矩和剪力。隧道施工过程中,盾构隧道管片的最大变形和应力对称地位于主隧道与隧道的交界面处。界面处段的上边缘和下边缘趋于从压缩变为拉伸。同时,管片拱顶内外及拱腰处的钢筋由压应力变为拉应力,易造成管片损坏,因此施工前可通过架设型钢框架对这些部位进行加固。 . 节段的机械性能接近于铰链或链杆,只能有效传递轴向力而不能抵抗弯矩和剪力。隧道施工过程中,盾构隧道管片的最大变形和应力对称地位于主隧道与隧道的交界面处。界面处段的上边缘和下边缘趋于从压缩变为拉伸。同时,管片拱顶内外及拱腰处的钢筋由压应力变为拉应力,容易造成管片损坏,因此在施工前可通过架设型钢框架对这些部位进行加固。 . 只能有效传递轴向力而不能抵抗弯矩和剪力。隧道施工过程中,盾构隧道管片的最大变形和应力对称地位于主隧道与隧道的交界面处。界面处段的上边缘和下边缘趋于从压缩变为拉伸。同时,管片拱顶内外及拱腰处的钢筋由压应力变为拉应力,容易造成管片损坏,因此在施工前可通过架设型钢框架对这些部位进行加固。 . 只能有效传递轴向力,不能抵抗弯矩和剪力。隧道施工过程中,盾构隧道管片的最大变形和应力对称地位于主隧道与隧道的交界面处。界面处段的上边缘和下边缘趋于从压缩变为拉伸。同时,管片拱顶内外及拱腰处的钢筋由压应力变为拉应力,容易造成管片损坏,因此在施工前可通过架设型钢框架对这些部位进行加固。 . 盾构隧道管片的最大变形和应力对称地位于主隧道与交叉通道的交界面处。界面处段的上边缘和下边缘趋于从压缩变为拉伸。同时,管片拱顶内外及拱腰处的钢筋由压应力变为拉应力,容易造成管片损坏,因此在施工前可通过架设型钢框架对这些部位进行加固。 . 盾构隧道管片的最大变形和应力对称地位于主隧道与交叉通道的交界面处。界面处段的上边缘和下边缘趋于从压缩变为拉伸。同时,管片拱顶内外及拱腰处的钢筋由压应力变为拉应力,容易造成管片损坏,因此在施工前可通过架设型钢框架对这些部位进行加固。 .
更新日期:2020-07-28
down
wechat
bug