当前位置: X-MOL 学术Eur. Phys. J. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiplicity dependence of shear viscosity, isothermal compressibility and speed of sound in pp collisions at $$\sqrt{s}$$ s = 7 TeV
The European Physical Journal A ( IF 2.6 ) Pub Date : 2020-07-22 , DOI: 10.1140/epja/s10050-020-00197-7
Dushmanta Sahu , Sushanta Tripathy , Raghunath Sahoo , Archita Rani Dash

In order to understand the detailed dynamics of systems produced in pp collisions, it is essential to know about the Equation of State (EoS) and various thermodynamic properties. In this work, we study the shear viscosity to entropy density ratio, isothermal compressibility and speed of sound of the system by considering a differential freeze-out scenario. We have used a thermodynamically consistent Tsallis non-extensive statistics to have a better explanation for the dynamics of pp collision systems. While the shear viscosity to entropy density ratio provides information about the measure of fluidity of a system formed in high energy collisions, the isothermal compressibility gives a clear idea about the deviation of the system from a perfect fluid. The speed of sound in the system as a function of \(\langle dN_\mathrm{ch}/d\eta \rangle \) gives us a vivid picture of the dynamics of the system. The results show quite an intuitive perspective on high-multiplicity pp collisions and give us a limit of \(\langle dN_\mathrm{ch}/d\eta \rangle \)\(\gtrsim \) (10–20), after which a change in the dynamics of the system may be observed.

中文翻译:

在$$ \ sqrt {s} $$ s = 7 TeV时pp碰撞中的剪切粘度,等温压缩性和声速的多重相关性

为了了解pp碰撞中产生的系统的详细动力学,必须了解状态方程(EoS)和各种热力学性质。在这项工作中,我们通过考虑微分冻结情况研究了剪切粘度与熵密度之比,等温可压缩性和系统的声速。我们使用了热力学一致的Tsallis非广义统计量来更好地解释pp的动力学碰撞系统。尽管剪切粘度与熵密度之比提供了有关在高能碰撞中形成的系统的流动性度量的信息,但等温可压缩性给出了有关系统与理想流体的偏差的清晰思路。系统中的声音速度与\(\ langle dN_ \ mathrm {ch} / d \ eta \ rangle \)的函数关系密切,为我们提供了系统动态的生动图片。结果显示了对高多重性pp碰撞的直观印象,并给出了\(\ langle dN_ \ mathrm {ch} / d \ eta \ rangle \)\(\ gtrsim \)(10–20)的极限可以观察到系统动力学的变化。
更新日期:2020-07-22
down
wechat
bug