Skip to main content

Advertisement

Log in

Multiplicity dependence of shear viscosity, isothermal compressibility and speed of sound in pp collisions at \(\sqrt{s}\) = 7 TeV

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In order to understand the detailed dynamics of systems produced in pp collisions, it is essential to know about the Equation of State (EoS) and various thermodynamic properties. In this work, we study the shear viscosity to entropy density ratio, isothermal compressibility and speed of sound of the system by considering a differential freeze-out scenario. We have used a thermodynamically consistent Tsallis non-extensive statistics to have a better explanation for the dynamics of pp collision systems. While the shear viscosity to entropy density ratio provides information about the measure of fluidity of a system formed in high energy collisions, the isothermal compressibility gives a clear idea about the deviation of the system from a perfect fluid. The speed of sound in the system as a function of \(\langle dN_\mathrm{ch}/d\eta \rangle \) gives us a vivid picture of the dynamics of the system. The results show quite an intuitive perspective on high-multiplicity pp collisions and give us a limit of \(\langle dN_\mathrm{ch}/d\eta \rangle \)\(\gtrsim \) (10–20), after which a change in the dynamics of the system may be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical/phenomenological paper, which uses experimental data from ALICE at the LHC (cited in Ref. 34).]

References

  1. R. Sahoo, AAPPS Bull. 29, 16 (2019)

    Google Scholar 

  2. J. Adam et al. [ALICE Collaboration], Nature Phys. 13, 535 (2017)

  3. D. Velicanu [CMS Collaboration], J. Phys. G 38, 124051 (2011)

  4. J. Adams et al. [STAR Collaboration], Nucl. Phys. A 757, 102 (2005)

  5. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    Article  ADS  Google Scholar 

  6. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  ADS  Google Scholar 

  7. T. Hirano, M. Gyulassy, Nucl. Phys. A 769, 71 (2006)

    Article  ADS  Google Scholar 

  8. M. Mukherjee, S. Basu, A. Chatterjee, S. Chatterjee, S.P. Adhya, S. Thakur, T.K. Nayak, Phys. Lett. B 784, 1 (2018)

    Article  ADS  Google Scholar 

  9. D. Sahu, S. Tripathy, R. Sahoo, S.K. Tiwari, arXiv:2001.01252 [hep-ph]

  10. B. Mohanty, J.e Alam, Phys. Rev. C 68, 064903 (2003)

    Article  ADS  Google Scholar 

  11. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  12. B.I. Abelev et al. [STAR Collaboration], Phys. Rev. C 75, 064901 (2007)

  13. A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 83, 064903 (2011)

  14. K. Aamodt et al. [ALICE Collaboration], Eur. Phys. J. C 71, 1655 (2011)

  15. B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 717, 162 (2012)

  16. B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 712, 309 (2012)

  17. S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 72, 2164 (2012)

  18. C. Tsallis, J Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  19. J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)

    Article  ADS  Google Scholar 

  20. C. Tsallis, E.P. Borges, arXiv:cond-mat/0301521 [cond-mat.stat-mech]

  21. T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek, R. Sahoo, Eur. Phys. J. A 52, 30 (2016)

    Article  ADS  Google Scholar 

  22. J. Randrup, Phys. Rev. C 79, 054911 (2009)

    Article  ADS  Google Scholar 

  23. L. Palhares, E. Fraga, T. Kodama, J. Phys. G 38, 085101 (2011)

    Article  ADS  Google Scholar 

  24. V. Skokov, D. Voskresensky, JETP Lett. 90, 223 (2009)

    Article  ADS  Google Scholar 

  25. V. Skokov, D. Voskresensky, Nucl. Phys. A 828, 401 (2009)

    Article  ADS  Google Scholar 

  26. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  27. T. Biro, E. Molnar, Phys. Rev. C 85, 024905 (2012)

    Article  ADS  Google Scholar 

  28. S.K. Tiwari, S. Tripathy, R. Sahoo, N. Kakati, Eur. Phys. J. C 78, 938 (2018)

    Article  ADS  Google Scholar 

  29. G.P. Kadam, H. Mishra, Phys. Rev. C 92, 035203 (2015)

    Article  ADS  Google Scholar 

  30. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

    Article  ADS  Google Scholar 

  31. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  32. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980)

    MATH  Google Scholar 

  33. J. Cleymans, D. Worku, Mod. Phys. Lett. A 26, 1197 (2011)

  34. S. Acharya et al. [ALICE Collaboration], Phys. Rev. C 99, 024906 (2019)

  35. A. Khuntia, H. Sharma, S. Kumar Tiwari, R. Sahoo, J. Cleymans, Eur. Phys. J. A 55, 3 (2019)

  36. D. Sahu, S. Tripathy, G.S. Pradhan, R. Sahoo, Phys. Rev. C 101, 014902 (2020)

    Article  ADS  Google Scholar 

  37. Rana A. Fine, Frank J. Millero, J. Chem. Phys. 59, 5529 (1973)

    Article  ADS  Google Scholar 

  38. S. Deb, G. Sarwar, R. Sahoo, J. e. Alam, arXiv:1909.02837 [hep-ph]

  39. A. Khuntia, P. Sahoo, P. Garg, R. Sahoo, J. Cleymans, Eur. Phys. J. A 52, 292 (2016)

    Article  ADS  Google Scholar 

  40. N. Sharma, J. Cleymans, B. Hippolyte, Adv. High Energy Phys. 2019, 5367349 (2019)

    Google Scholar 

  41. S. J. Ling, S. Jeff, M. William, University Physics: Volume 1 (2016)

  42. R. Campanini, G. Ferri, Phys. Lett. B 703, 237 (2011)

    Article  ADS  Google Scholar 

  43. R. Sahoo, D. Thakur, S. De, S. Dansana, Springer Proc. Phys. 234, 173 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from ALICE Project No. SR/MF/PS-01/2014-IITI(G) of Department of Science & Technology, Government of India. R. S. acknowledges the financial supports from DAE-BRNS Project No. 58/14/29/2019-BRNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunath Sahoo.

Additional information

Communicated by Tamas Biro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, D., Tripathy, S., Sahoo, R. et al. Multiplicity dependence of shear viscosity, isothermal compressibility and speed of sound in pp collisions at \(\sqrt{s}\) = 7 TeV. Eur. Phys. J. A 56, 187 (2020). https://doi.org/10.1140/epja/s10050-020-00197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00197-7

Navigation