当前位置: X-MOL 学术Ramanujan J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Burgess bound via a trivial delta method
The Ramanujan Journal ( IF 0.6 ) Pub Date : 2020-07-18 , DOI: 10.1007/s11139-020-00258-x
Keshav Aggarwal , Roman Holowinsky , Yongxiao Lin , Qingfeng Sun

Let g be a fixed Hecke cusp form for \(\mathrm SL(2,{\mathbb {Z}})\) and \(\chi \) be a primitive Dirichlet character of conductor M. The best known subconvex bound for \(L(1/2,g\otimes \chi )\) is of Burgess strength. The bound was proved by a couple of methods: shifted convolution sums and the Petersson/Kuznetsov formula analysis. It is natural to ask what inputs are really needed to prove a Burgess-type bound on \(\mathrm GL(2)\). In this paper, we give a new proof of the Burgess-type bounds \({L(1/2,g\otimes \chi )\ll _{g,\varepsilon } M^{1/2-1/8+\varepsilon }}\) and \(L(1/2,\chi )\ll _{\varepsilon } M^{1/4-1/16+\varepsilon }\) that does not require the basic tools of the previous proofs and instead uses a trivial delta method.

中文翻译:

通过简单的增量法进行的伯吉斯边界

g\(\ mathrm SL(2,{\ mathbb {Z}})\)的固定Hecke尖点形式,而\(\ chi \)为导体M的原始狄利克雷特特征。\(L(1/2,g \ otimes \ chi)\)的最著名子凸边界具有Burgess强度。通过两种方法证明了边界:移位卷积和和Petersson / Kuznetsov公式分析。很自然地问,要证明\(\ mathrm GL(2)\)上的Burgess型边界,实际上需要什么输入。在本文中,我们给出了Burgess型边界\({L(1/2,g \ otimes \ chi)\ ll _ {g,\ varepsilon} M ^ {1 / 2-1 / 8 + \ varepsilon}} \)\(L(1/2,\ chi)\ ll _ {\ varepsilon} M ^ {1 / 4-1 / 16 + \ varepsilon} \) 不需要以前的证明的基本工具,而是使用琐碎的delta方法。
更新日期:2020-07-18
down
wechat
bug