Skip to main content
Log in

The Burgess bound via a trivial delta method

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let g be a fixed Hecke cusp form for \(\mathrm SL(2,{\mathbb {Z}})\) and \(\chi \) be a primitive Dirichlet character of conductor M. The best known subconvex bound for \(L(1/2,g\otimes \chi )\) is of Burgess strength. The bound was proved by a couple of methods: shifted convolution sums and the Petersson/Kuznetsov formula analysis. It is natural to ask what inputs are really needed to prove a Burgess-type bound on \(\mathrm GL(2)\). In this paper, we give a new proof of the Burgess-type bounds \({L(1/2,g\otimes \chi )\ll _{g,\varepsilon } M^{1/2-1/8+\varepsilon }}\) and \(L(1/2,\chi )\ll _{\varepsilon } M^{1/4-1/16+\varepsilon }\) that does not require the basic tools of the previous proofs and instead uses a trivial delta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adolphson, A., Sperber, S.: Twisted exponential sums and Newton polyhedra. J. Reine Angew. Math. 443, 151–177 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Blomer, V., Harcos, G.: Hybrid bounds for twisted \(L\)-functions. J. Reine Angew. Math. 621, 53–79 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Blomer, V., Harcos, G., Michel, P.: A Burgess-like subconvex bound for twisted \(L\)-functions. Forum Math. 19(1), 61–105 (2007). Appendix 2 by Z. Mao

    Article  MathSciNet  Google Scholar 

  4. Burgess, D.A.: On character sums and \(L\)-series. II. Proc. Lond. Math. Soc. 3(1), 524–536 (1963)

    Article  MathSciNet  Google Scholar 

  5. Bykovskiĭ. V.A.: A trace formula for the scalar product of Hecke series and its applications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226, no. Anal. Teor. Chisel i Teor. Funktsiĭ. 13, 14–36, 235–236 (1996)

  6. Conrey, J.B., Iwaniec, H.: The cubic moment of central values of automorphic \(L\)-functions. Ann. Math. 151(3), 1175–1216 (2000)

    Article  MathSciNet  Google Scholar 

  7. Duke, W., Friedlander, J., Iwaniec, H.: Bounds for automorphic \(L\)-functions. Invent. Math. 112(1), 1–8 (1993)

    Article  MathSciNet  Google Scholar 

  8. Fouvry, É., Kowalski, E., Michel, P.: Algebraic twists of modular forms and Hecke orbits. Geom. Funct. Anal. 25(2), 580–657 (2015)

    Article  MathSciNet  Google Scholar 

  9. Fu, L.: Weights of twisted exponential sums. Math. Z. 262(2), 449–472 (2009)

    Article  MathSciNet  Google Scholar 

  10. Holowinsky, R., Nelson, P.D.: Subconvex bounds on \({\rm GL}_{3}\) via degeneration to frequency zero. Math. Ann. 372(1–2), 299–319 (2018)

    Article  MathSciNet  Google Scholar 

  11. Kowalski, E., Michel, P., VanderKam, J.: Rankin-Selberg \(L\)-functions in the level aspect. Duke Math. J. 114(1), 123–191 (2002)

    Article  MathSciNet  Google Scholar 

  12. Lin, Y.: Bounds for twists of \({\rm GL(3)}\)\(L\)-functions, arXiv:1802.05111

  13. Lin, Y., Michel, P., Sawin, W.: Algebraic twists of \({\rm GL}_{3}\times {\rm GL}_{2}\)\(L\)-functions, arXiv:1912.09473

  14. Liu, J., Wang, Y., Ye, Y.: A proof of Selberg’s orthogonality for automorphic \(L\)-functions. Manuscripta Math. 118(2), 135–149 (2005)

    Article  MathSciNet  Google Scholar 

  15. Molteni, G.: Upper and lower bounds at \(s=1\) for certain Dirichlet series with Euler product. Duke Math. J. 111(1), 133–158 (2002)

    Article  MathSciNet  Google Scholar 

  16. Munshi, R.: Twists of \({\rm GL(3)}\)\(L\)-functions, arXiv:1604.08000

  17. Munshi, R.: The circle method and bounds for \(L\)-functions—IV: Subconvexity for twists of \({\rm GL(3)}\)\(L\)-functions. Ann. Math. 182(2), 617–672 (2015)

    Article  MathSciNet  Google Scholar 

  18. Munshi, R.: A Note on Burgess Bound, Geometry, Algebra, Number Theory, and Their Information Technology Applications, vol. 251, pp. 273–289. Springer, Cham (2018)

    Book  Google Scholar 

  19. Petrow, I., Young, M.P.: The fourth moment of Dirichlet \(L\)-functions along a coset and the Weyl bound, arXiv:1908.10346

  20. Petrow, I., Young, M.P.: The Weyl bound for Dirichlet \(L\)-functions of cube-free conductor, arXiv:1811.02452

Download references

Acknowledgements

We are very grateful to Paul Nelson for many valuable comments. We are also very thankful to the referee for his or her very careful reading and detailed comments of the manuscript. K. A. and Y. L. thank their advisor R. H. for introducing them into the project and explaining the idea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Holowinsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Q. S. was partially supported by NSFC (Grant No. 11871306) and CSC.

Appendix A: Shifted character sums and counting lemmas

Appendix A: Shifted character sums and counting lemmas

For this section, let \(M>3\) be a prime and define

$$\begin{aligned} \mathfrak {K}=\sum _{z\in \mathbb {F}_M^{\times }}\bar{\chi }(r+\ell z) e\left( \frac{n\overline{z}}{M}\right) ,\qquad (\ell ,M)=1,\quad n,r,\ell \in \mathbb {Z}. \end{aligned}$$

Lemma A.1

Suppose that \((r,M)=1\). If M|n, then \( \mathfrak {K}=-\bar{\chi }(r). \) If \(M\not \mid n\), then

$$\begin{aligned} \mathfrak {K}\ll M^{1/2}. \end{aligned}$$

Proof

For M|n, trivial. If \(M\not \mid n\), by the Fourier expansion of \(\chi \) in terms of additive characters

$$\begin{aligned} \chi (a)=g_{\bar{\chi }}^{-1}\sum _{y\bmod M}\bar{\chi }(y)e\left( \frac{a y}{M}\right) , \end{aligned}$$
(26)

we have

$$\begin{aligned} \mathfrak {K}=g_{\chi }^{-1}\sum _{y,z\in \mathbb {F}_M^{\times }}\chi (y) e\left( \frac{ry+\ell yz+n\overline{z}}{M}\right) . \end{aligned}$$

Then the bound follows from [1, Corollary 4.3]. \(\square \)

We define

$$\begin{aligned} {\mathfrak {C}}=\mathop {\sum _{z\in \mathbb {F}_M^{\times }}}_{ (n+\beta \overline{z},M)=1}\bar{\chi }(r_1+z) \chi \bigg (r_2+\alpha (\overline{n+\beta \overline{z}})\bigg ), \qquad (\alpha \beta ,M)=1,\quad n,r_1,r_2,\alpha ,\beta \in \mathbb {Z}. \end{aligned}$$

Lemma A.2

Suppose that \((r_1r_2,M)=1\). If M|n, we have

$$\begin{aligned} {\mathfrak {C}}=\chi (\alpha \overline{\beta }) R_M(r_2-r_1\alpha \overline{\beta })-\chi (r_2\overline{r_1}), \end{aligned}$$

where \(R_M(a)=\sum _{z\in \mathbb {F}_M^{\times }}e(az/M)\) is the Ramanujan sum. If \(M\not \mid n\) and at least one of \(r_1-\overline{n}\beta \) and \(r_2+\overline{n}\alpha \) is nonzero in \(\mathbb {F}_M\), then

$$\begin{aligned} {\mathfrak {C}}\ll M^{1/2}. \end{aligned}$$

Finally, if \(n\ne 0\) and \(r_1-\overline{n}\beta =r_2+\overline{n}\alpha =0\) in \({\mathbb {F}}_M\), then

$$\begin{aligned} {\mathfrak {C}}= {\left\{ \begin{array}{ll} -\chi (nr_2\overline{\beta }) \quad &{}\text { if } \chi \text { is not a quadratic character}, \\ \chi (\overline{n}r_2\beta )(M-1) \quad &{}\text { if } \chi \text { is a quadratic character}. \end{array}\right. } \end{aligned}$$

Proof

For M|n,

$$\begin{aligned} {\mathfrak {C}} =\sum _{z\in \mathbb {F}_M}\bar{\chi }(r_1+z) \chi (r_2+\alpha \overline{\beta }z)-\chi (r_2\overline{r_1}). \end{aligned}$$

Then the first statement follows from (26). If \(M\not \mid n\), by making change of variables \(z\rightarrow \overline{n}\beta z\) and \(z+1\rightarrow z\), we have

$$\begin{aligned} {\mathfrak {C}} =\sum _{z\in \mathbb {F}_M^{\times }} \bar{\chi }(r_1+\overline{n}\beta (z-1)) \chi (r_2+\overline{n}\alpha (1-\overline{z}))-\chi (r_2\overline{r_1}). \end{aligned}$$

Applying (26) again we get

$$\begin{aligned} {\mathfrak {C}}= & {} g_{\chi }^{-1}g_{\bar{\chi }}^{-1}\sum _{x,y,z\in \mathbb {F}_M^{\times }}\chi (x)\bar{\chi }(y) e\left( \frac{(r_1-\overline{n}\beta )x+ (r_2+\overline{n}\alpha )y+\overline{n}\beta xz-\overline{n} \alpha y\overline{z}}{M}\right) \\&-\chi (r_2\overline{r_1}). \end{aligned}$$

Consider the Newton polyhedron \(\Delta (f)\) of

$$\begin{aligned} f(x,y,z)=(r_1-\overline{n}\beta )x+ (r_2+\overline{n}\alpha )y+\overline{n}\beta xz-\overline{n} \alpha yz^{-1}\in \mathbb {F}_M^{\times }[x,y,z,(x y z)^{-1}]. \end{aligned}$$

We separate into two cases.

  1. (1)

    If \(r_1-\overline{n}\beta =0\) or \(r_2+\overline{n}\alpha =0\) in \(\mathbb {F}_M\), then \(\Delta (f)\) is the tetrahedron in \(\mathbb {R}^3\) with vertices (0, 0, 0), (0, 1, 0), (1, 0, 1), \((0,1,-1)\) or (0, 0, 0), (1, 0, 0), (1, 0, 1), \((0,1,-1)\). It is easy to check that f is nondegenerate with respect to \(\Delta (f)\). By [1] (see also [9]), we have \( {\mathfrak {C}}\ll M^{1/2}. \)

  2. (2)

    If both \(r_1-\overline{n}\beta \) and \(r_2+\overline{n}\alpha \) are nonzero in \(\mathbb {F}_M\), then \(\Delta (f)\) is the pentahedron in \(\mathbb {R}^3\) with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, 1) and \((0,1,-1)\). The only face which fails to meet the criterion for nondegeneracy is the quadrilateral one with polynomial \( f_{\sigma }(x,y,z)=(r_1-\overline{n}\beta )x+ (r_2+\overline{n}\alpha )y+\overline{n}\beta xz-\overline{n} \alpha yz^{-1} \) for which the locus of \( \partial f_{\sigma }/\partial x=\partial f_{\sigma }/\partial y= \partial f_{\sigma }/\partial z=0 \) is empty in \((\mathbb {F}_M^{\times })^3\) only if \(n\not \equiv \beta \overline{r_1}-\alpha \overline{r_2}\bmod M\). Therefore, for \(n\not \equiv \beta \overline{r_1}-\alpha \overline{r_2}\bmod M\), we can apply the square-root cancellation result in [1] or [9] to get \({\mathfrak {C}}\ll M^{1/2}\).

For \(n\equiv \beta \overline{r_1}-\alpha \overline{r_2}\bmod M\), we have \( r_1-\overline{n}\beta \equiv -\alpha r_1\overline{nr_2}\bmod M\) and \(r_2+\overline{n}\alpha \equiv \beta r_2\overline{nr_1}\bmod M.\) By changing variables \(x\rightarrow x\overline{z}\) and \(\overline{n}x\rightarrow x\), \(\overline{n}y\rightarrow y\) we obtain

$$\begin{aligned} \begin{aligned} {\mathfrak {C}} =&g_{\chi }^{-1}g_{\bar{\chi }}^{-1}\sum _{x,y,z\in \mathbb {F}_M^{\times }}\chi (x)\bar{\chi }(y)\bar{\chi }(z) e\left( \frac{ (r_1\overline{r_2}x+y)(\beta r_2\overline{r_1}-\alpha \overline{z})}{M}\right) -\chi (r_2\overline{r_1}). \end{aligned} \end{aligned}$$

Since \(\chi \) is primitive, the sum over x and y vanishes if \(z\equiv \alpha r_1\overline{\beta r_2}\bmod M\). Thus we can make change of variables \((\beta r_2\overline{r_1}-\alpha \overline{z})x\rightarrow x\) and \((\beta r_2\overline{r_1}-\alpha \overline{z})y\rightarrow y\) to get

$$\begin{aligned} \begin{aligned} {\mathfrak {C}} =&g_{\chi }^{-1}g_{\bar{\chi }}^{-1}\mathop {\sum _{z\in \mathbb {F}_M^{\times }}}_{z\not \equiv \alpha r_1\overline{\beta r_2}\bmod M} \bar{\chi }(z) \sum _{x,y\in \mathbb {F}_M^{\times }} \chi (x)\bar{\chi }(y) e\left( \frac{ r_1\overline{r_2}x+y}{M}\right) -\chi (r_2\overline{r_1})\\ =&-\chi ^2(r_2\overline{r_1})\chi (\beta \overline{\alpha })-\chi (r_2\overline{r_1}). \end{aligned} \end{aligned}$$

Finally, if \(n\ne 0\) and \(r_1-\overline{n}\beta =r_2+\overline{n}\alpha =0\) in \({\mathbb {F}}_M\),

$$\begin{aligned} \begin{aligned} {\mathfrak {C}}&= \chi (n)\sum _{z\in {\mathbb {F}}_M^\times }\bar{\chi }(r_1+z)\bar{\chi }(n+\beta \overline{z})\chi (r_2+\overline{n}\alpha +r_2\beta \overline{zn})\\&= \chi (r_2\beta )\sum _{z\in {\mathbb {F}}_M^\times }\bar{\chi }(r_1+z)\bar{\chi }(nz+\beta ) =\chi (r_2\beta )\sum _{\begin{array}{c} z\in {\mathbb {F}}_M \\ z\ne \overline{n}\beta \end{array}}\bar{\chi }(r_1-\overline{n}\beta +z)\bar{\chi }(nz)\\&= \chi (\overline{n}r_2\beta )\sum _{\begin{array}{c} z\in {\mathbb {F}}_M \\ z\ne \overline{n}\beta \end{array}}\bar{\chi }^2(z). \end{aligned} \end{aligned}$$

If \(\chi \) is not a quadratic character, then by orthogonality of characters, \({\mathfrak {C}}= -\chi (nr_2\overline{\beta })\). If \(\chi \) is a quadratic character, then \({\mathfrak {C}}=\chi (\overline{n}r_2\beta )(M-1)\). \(\square \)

Lemma A.3

\(\Sigma _{10}\ll (PML)^{\varepsilon }\frac{L^6M^4}{P^4N^2}\) and \(\Delta _{10}\ll (PML)^{\varepsilon }\frac{L^3M^2}{P^2N}\).

Proof

We recall \(|r_2|<R:=N^{\varepsilon }PM/N\). Suppose

$$\begin{aligned} \begin{aligned} P^2L\ll N^{1-\varepsilon }. \end{aligned} \end{aligned}$$
(27)

Then the congruence \(r_2\ell _1p_2\equiv r_1\ell _2 p_1\bmod {M}\) implies that \(r_2\ell _1p_2= r_1\ell _2 p_1\). Similarly, \(r_2'\ell _1p_2'= r_1'\ell _2 p_1'\). Therefore fixing \(\ell _1,p_2,r_2\) fixes \(\ell _2,p_1,r_1\) up to factors of \(\log M\). If \(\ell _1\ne \ell _2\), then the equality \(r_2'\ell _1p_2'= r_1'\ell _2 p_1'\) implies \(\ell _2|r_2'\). That saves a factor of L in \(r_2'\) sum. Further, for fixed \(p_2',r_2'\), there are only \(\log M\) many \(p_1', r_1'\). In the case \(\ell _1=\ell _2\), the previous identities become \(r_2p_2=r_1p_1\). Therefore fixing \(r_2, p_2\) fixes \(r_1, p_1\) up to factors of \(\log M\).

Finally, the congruence conditions on \(r_1, r_2\) and n can be combined to write

$$\begin{aligned} \begin{aligned} -\overline{r_1}\ell _1 p_2+\overline{r_2}\ell _2p_1+n\equiv 0\bmod p_1p_2M. \end{aligned} \end{aligned}$$

From (22), the n satisfies \(|n|\ll N^{1+\varepsilon }L/M\), which is smaller than the size of the modulus \(p_1p_2M\). Therefore for fixed \(r_i, \ell _i, p_i\), the n sum is at most singleton. Similarly, \(n'\) is at most a singleton. Therefore up to a factor of \((PML)^\varepsilon \),

$$\begin{aligned} \begin{aligned} \Sigma _{10}\ll L^5L^2\frac{1}{P^3}R\frac{1}{P^3}\frac{R}{L}M^2\ll \frac{L^6M^4}{P^4N^2} \quad \text { and } \quad \Delta _{10}\ll L^3\frac{1}{P^3}RM \ll \frac{L^3M^2}{P^2N}. \end{aligned} \end{aligned}$$

\(\square \)

Lemma A.4

\(\Sigma _{11}\ll (PML)^\varepsilon \frac{L^8M^4}{N^4P^4}\left( 1+\frac{P^2}{{\mathcal {N}}_0}\right) ^2\) and \(\Delta _{11}\ll (PML)^\varepsilon \frac{L^3M^2}{N^2P^2}\left( 1+\frac{P^2}{{\mathcal {N}}_0}\right) \).

Proof

We let the variables of summation \(\ell _i, p_i, r_i, n\) to be the same as before. The expressions for \(\Delta _{11}\) and \(\Sigma _{11}\) are the same as \(\Delta _{10}\) and \(\Sigma _{10}\) with the condition \(r_2\ell _1p_2\equiv r_1\ell _2p_1\bmod M\) replaced by \(r_2\ell _1p_2\not \equiv r_1\ell _2p_1\bmod M\). First let \(\ell _1\ne \ell _2\). If \(p_1\ne p_2\), then \((n,p_1p_2)=1\), \(r_1\equiv \overline{nM}\ell _1p_2\bmod {p_1}\) and \(r_2\equiv - \overline{nM} \ell _2 p_1 \bmod {p_2}\). Since \(R\gg P\), these congruence conditions therefore save a factor of O(P) in each \(r_i\)-sum. Similarly we save a factor of O(P) in each \(r_i'\) sum. The congruence \(n\equiv 0\bmod M\) (resp \(n'\equiv 0\bmod M\)) saves a factor of at most M in the n-sum (resp \(n'\)-sum). If \(p_1=p_2=p\), then the congruence conditions imply p|n. We already have M|n. Recall from (22) the n-sum satisfies \(|n|\ll N^{1+\varepsilon }L/M\), which is smaller than pM by our choice of P and L. Hence we have \(n=0\). The remaining congruence condition \(r_1\ell _2\equiv r_2\ell _1\bmod p\) shows that fixing \(r_1,\ell _2,\ell _1\) saves a factor of O(P) in the \(r_2\)-sum. The exact same savings follow for \(n'\) and \(r_2'\) sums. Also, the exact same analysis as done for \(p_i,r_i,n\)-sums follows for the case \(\ell _1=\ell _2\). Therefore up to a factor of \((PML)^\varepsilon \),

$$\begin{aligned} \begin{aligned} \Sigma _{11}&\ll L^8\bigg [\frac{1}{P^2}\frac{R^2}{P^2}\left( 1+\frac{P^2}{{\mathcal {N}}_0}\right) \bigg ]^2 + L^8\bigg [\frac{1}{P^3}\frac{R^2}{P}\bigg ]^2 \ll \frac{L^8M^4}{N^4P^4}\left( 1+\frac{P^2}{{\mathcal {N}}_0}\right) ^2,\\ \Delta _{11}&\ll L^3\bigg [\frac{1}{P^2}\frac{R^2}{P^2}\left( 1+\frac{P^2}{{\mathcal {N}}_0}\right) \bigg ] + L^3\bigg [\frac{1}{P^3}\frac{R^2}{P}\bigg ] \ll \frac{L^3M^2}{N^2P^2}\left( 1+\frac{P^2}{{\mathcal {N}}_0}\right) . \end{aligned} \end{aligned}$$

\(\square \)

Lemma A.5

\(\Sigma _{20}\ll (PML)^\varepsilon \frac{L^6M^4}{P^4N^2}\) and \(\Delta _{20}\ll (PML)^\varepsilon \frac{L^3M^2}{P^2N}\).

Proof

The congruence conditions on \(r_1, r_2\) and n can be combined to write

$$\begin{aligned} -\ell _1p_2+nr_1\equiv 0\bmod p_1M \quad \text { and } \quad \ell _2p_1+nr_2\equiv 0\bmod p_2M. \end{aligned}$$

By (22), we have \(|nR|\ll N^{\varepsilon }PL<PM^{1-\varepsilon }\). The congruence conditions therefore give equalities

$$\begin{aligned} \begin{aligned}&n r_1 = \ell _1 p_2 \quad \text { and } \quad n r_2 = -\ell _2 p_1, \\&n' r_1' = \ell _1 p_2' \quad \text { and } \quad n' r_2' = -\ell _2 p_1'. \end{aligned} \end{aligned}$$

Note that \(n=\ell _1p_2/r_1 = -\ell _2 p_1/r_2\) implies \(\ell _1p_2r_2=-\ell _2p_1r_1\). Therefore fixing \(\ell _1,p_2,r_2\) fixes \(\ell _2,p_1,r_1\) up to factors of \(\log M\). Similarly, \(n'=\ell _1p_2'/r_1' = -\ell _2 p_1'/r_2'\), so that \(\ell _1p_2'r_2'=-\ell _2p_1'r_1'\). If \(\ell _1\ne \ell _2\), then \(\ell _2|r_2'\). That saves a factor of L in \(r_2'\) sum. Moreover for fixed \(\ell _1,p_2',r_2'\), there are only \(\log M\) many \(p_1', r_1'\). Finally the identities \(n r_1 = \ell _1 p_2\) and \(n' r_1' = \ell _1 p_2'\) fix n and \(n'\).

In the case \(\ell _1=\ell _2\), the previous identities become \(r_2p_2=-r_1p_1\). Therefore fixing \(r_2, p_2\) fixes \(r_1, p_1\) up to factors of \(\log M\). Finally the identity \(n r_1 = \ell p_2\) fixes n. Therefore up to a factor of \((PML)^\varepsilon \),

$$\begin{aligned} \begin{aligned} \Sigma _{20}\ll L^5L^2\frac{1}{P^3}R\frac{1}{P^3}\frac{R}{L}M^2\ll \frac{L^6M^4}{P^4N^2}, \quad \text { and } \quad \Delta _{20} \ll L^3\frac{1}{P^3}RM \ll \frac{L^3M^2}{P^2N}. \end{aligned} \end{aligned}$$

\(\square \)

Lemma A.6

\(\Sigma _{21}\ll (PML)^\varepsilon \frac{L^8M^5}{N^4P^4}\left( 1+\frac{P^2M}{{\mathcal {N}}_0}\right) ^2\) and \(\Delta _{21}\ll (PML)^\varepsilon \frac{L^3M^{5/2}}{N^2P^2}\left( 1+\frac{P^2M}{{\mathcal {N}}_0}\right) \).

Proof

When \(p_1\ne p_2\), the congruence \(-\overline{r_1}\ell _1 p_2+\overline{r_2}\ell _2p_1+n\equiv 0(p_1p_2)\) implies that \((n,p_1p_2)=1\). Moreover, for fixed n, \(p_i\) and \(\ell _i\), \(i=1,2\),

$$\begin{aligned} \begin{aligned} r_1\equiv \overline{n}\ell _1p_2\bmod {p_1} \quad \text { and } \quad r_2\equiv -\overline{n}\ell _2p_1\bmod {p_2}. \end{aligned} \end{aligned}$$

These congruence conditions save a factor of P in each \(r_i\)-sum. In case \(p_1=p_2=p\), the congruence condition shows p|n. Moreover, \(-\overline{r_1}\ell _1+\overline{r_2}\ell _2+n/p \equiv 0 \bmod p\). Therefore fixing \(r_1, \ell _1, \ell _2, n\) saves P in \(r_2\)-sum. Similarly we get saving of P for each of the \(n'\) and \(r_2'\) sums. Also, the exact same analysis as done for \(p_i,r_i,n\)-sums follows for the case \(\ell _1=\ell _2\). Therefore up to a factor of \((PML)^\varepsilon \),

$$\begin{aligned} \Sigma _{21}\ll&L^8\bigg [\frac{1}{P^2}\frac{R^2}{P^2}\left( 1+\frac{P^2M}{{\mathcal {N}}_0}\right) M^{1/2}\bigg ]^2\\&+ L^8\bigg [\frac{1}{P^2}\frac{R^2}{P^2}\left( 1+\frac{PM}{{\mathcal {N}}_0}\right) M^{1/2}\bigg ]^2 \ll \frac{L^8M^5}{N^4P^4}\left( 1+\frac{P^2M}{{\mathcal {N}}_0}\right) ^2, \nonumber \\ \Delta _{21} \ll&L^3\bigg [\frac{1}{P^2}\frac{R^2}{P^2}\left( 1+\frac{P^2M}{{\mathcal {N}}_0}\right) M^{1/2}\bigg ]\\&+ L^3\bigg [\frac{1}{P^2}\frac{R^2}{P^2}\left( 1+\frac{PM}{{\mathcal {N}}_0}\right) M^{1/2}\bigg ] \ll \frac{L^3M^{5/2}}{N^2P^2}\left( 1+\frac{P^2M}{{\mathcal {N}}_0}\right) . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, K., Holowinsky, R., Lin, Y. et al. The Burgess bound via a trivial delta method. Ramanujan J 53, 49–74 (2020). https://doi.org/10.1007/s11139-020-00258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00258-x

Keywords

Mathematics Subject Classification

Navigation