当前位置: X-MOL 学术J. Polym. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of Long-Chain Acyl Substituents on the Thermoplasticity and Mechanical Properties of Paramylon Mixed Esters
Journal of Polymers and the Environment ( IF 4.7 ) Pub Date : 2020-05-28 , DOI: 10.1007/s10924-020-01763-2
Motonari Shibakami , Mitsugu Sohma

The moldability and robustness of thermoplastic paramylon mixed esters are highly related to primary structural parameters, such as the length of the long-chain acyl group and its degree of substitution. Short chain lengths and lower substitution degrees provide more robust molded thermoplastics, whereas longer chains and higher substitution degrees improve moldability. Herein, the choice of an appropriate long-chain acyl group (lauroyl or myristoyl) and the effect of the substitution degree were investigated by examining the thermal and mechanical properties of a series of paramylon acetate laurates and myristates and comparing them with those of their curdlan analogues. Melt volume flow rate measurements (180–220 °C) indicate that myristoyl substitution in paramylon results in a local thermoplasticity maximum at a substitution degree of 0.35 at higher temperatures (above ~ 200 °C). These measurements and dynamic viscoelastic analyses suggest that the myristoyl substitution serves an “internal plasticizer” in the higher strain range and higher temperature region (~ 200–230 °C), while it serves as a “viscosity increaser” in the lower strain range and lower temperature region (170–200 °C). Moreover, tensile and bending testing showed that this product exhibits superior mechanical strength. The successful realization of a good balance between moldability and robustness suggests that fine-tuning the chain length and substitution degree is an effective approach for producing thermoplastic polysaccharides with superior injection moldabilities and mechanical robustness.



中文翻译:

长链酰基取代基对对甲酰胺混合酯的热塑性和力学性能的影响

热塑性对mylony混合酯的可模塑性和耐用性与主要结构参数(例如长链酰基的长度及其取代度)高度相关。较短的链长和较低的取代度可提供更坚固的模塑热塑性塑料,而较长的链和较高的取代度可改善可模塑性。本文中,通过检查一系列醋酸对mymylon乙酸月桂酸酯和肉豆蔻酸酯的热和机械性能,并将其与它们的凝胶多糖进行比较,研究了合适的长链酰基(月桂酰基或肉豆蔻酰基)的选择以及取代度的影响。类似物。熔体体积流量测量(180–220°C)表明,对mylonyl的肉豆蔻酰取代导致取代度为0时的局部热塑性最高。35在较高温度下(约200°C以上)。这些测量和动态粘弹性分析表明,肉豆蔻酰基取代基在较高的应变范围和较高的温度区域(约200–230°C)下充当“内部增塑剂”,而在较低的应变范围内充当“增粘剂”。低温区域(170–200°C)。此外,拉伸和弯曲测试表明该产品具有优异的机械强度。成功地实现了可模塑性和坚固性之间的良好平衡,表明微调链长和取代度是生产具有优异注塑可塑性和机械坚固性的热塑性多糖的有效方法。这些测量和动态粘弹性分析表明,肉豆蔻酰基取代基在较高的应变范围和较高的温度区域(约200–230°C)中充当“内部增塑剂”,而在较低的应变范围和作用中充当“粘度增加剂”。较低的温度区域(170–200°C)。此外,拉伸和弯曲测试表明该产品具有优异的机械强度。成功地实现了可模塑性和坚固性之间的良好平衡,表明微调链长和取代度是生产具有优异注塑可塑性和机械坚固性的热塑性多糖的有效方法。这些测量和动态粘弹性分析表明,肉豆蔻酰基取代基在较高的应变范围和较高的温度区域(约200–230°C)下充当“内部增塑剂”,而在较低的应变范围内充当“增粘剂”。低温区域(170–200°C)。此外,拉伸和弯曲测试表明该产品具有优异的机械强度。成功地实现可模塑性和坚固性之间的良好平衡表明,微调链长和取代度是生产具有优异注塑可塑性和机械坚固性的热塑性多糖的有效方法。在较低的应变范围和较低的温度区域(170-200°C)中,它充当“粘度增加剂”。此外,拉伸和弯曲测试表明该产品具有优异的机械强度。成功地实现了可模塑性和坚固性之间的良好平衡,表明微调链长和取代度是生产具有优异注塑可塑性和机械坚固性的热塑性多糖的有效方法。在较低的应变范围和较低的温度区域(170-200°C)中,它充当“粘度增加剂”。此外,拉伸和弯曲测试表明该产品具有优异的机械强度。成功地实现了可模塑性和坚固性之间的良好平衡,表明微调链长和取代度是生产具有优异注塑可塑性和机械坚固性的热塑性多糖的有效方法。

更新日期:2020-07-15
down
wechat
bug