Skip to main content
Log in

Effects of Long-Chain Acyl Substituents on the Thermoplasticity and Mechanical Properties of Paramylon Mixed Esters

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The moldability and robustness of thermoplastic paramylon mixed esters are highly related to primary structural parameters, such as the length of the long-chain acyl group and its degree of substitution. Short chain lengths and lower substitution degrees provide more robust molded thermoplastics, whereas longer chains and higher substitution degrees improve moldability. Herein, the choice of an appropriate long-chain acyl group (lauroyl or myristoyl) and the effect of the substitution degree were investigated by examining the thermal and mechanical properties of a series of paramylon acetate laurates and myristates and comparing them with those of their curdlan analogues. Melt volume flow rate measurements (180–220 °C) indicate that myristoyl substitution in paramylon results in a local thermoplasticity maximum at a substitution degree of 0.35 at higher temperatures (above ~ 200 °C). These measurements and dynamic viscoelastic analyses suggest that the myristoyl substitution serves an “internal plasticizer” in the higher strain range and higher temperature region (~ 200–230 °C), while it serves as a “viscosity increaser” in the lower strain range and lower temperature region (170–200 °C). Moreover, tensile and bending testing showed that this product exhibits superior mechanical strength. The successful realization of a good balance between moldability and robustness suggests that fine-tuning the chain length and substitution degree is an effective approach for producing thermoplastic polysaccharides with superior injection moldabilities and mechanical robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Prog Polym Sci 26:1605

    Article  CAS  Google Scholar 

  2. Ifuku S, Ikuta A, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H (2013) Carbohydr Polym 98:1198

    Article  CAS  Google Scholar 

  3. Ifuku S, Saimoto H (2012) Nanoscale 4:3308

    Article  CAS  Google Scholar 

  4. Isogai A, Saito T, Fukuzumi H (2011) Nanoscale 3:71

    Article  CAS  Google Scholar 

  5. Iwatake A, Nogi M, Yano H (2008) Compos Sci Technol 68:2103

    Article  CAS  Google Scholar 

  6. Puanglek S, Kimura S, Iwata T (2017) Carbohydr Polym 169:245

    Article  CAS  Google Scholar 

  7. Savage AB, Young AE, Maasberg AT (1954) In: Ott E, Spurlin HM, Grafflin MW (eds), High polymers, vol V. Interscience Publishers Inc, New York

  8. Teramoto Y, Yoshioka M, Shiraishi N, Nishio Y (2002) J Appl Polym Sci 84:2621

    Article  CAS  Google Scholar 

  9. Erdmann R, Kabasci S, Kurek J, Zepnik S (2014) Materials 7:7752

    Article  Google Scholar 

  10. Zepnik S, Kabasci S, Kopitzky R, Radusch H-J, Wodke T (2013) Polymers 5:873

    Article  Google Scholar 

  11. Malm CJ, Kaul OW, Hiatt GD (1951) Ind Eng Chem 43:1094

    Article  CAS  Google Scholar 

  12. Park H-M, Misra M, Drzal LT, Mohanty AK (2004) Biomacromol 5:2281

    Article  CAS  Google Scholar 

  13. Toyama K, Soyama M, Tanaka S, Iji M (2015) Cellulose 22:1625

    Article  CAS  Google Scholar 

  14. Iji M, Toyama K, Tanaka S (2013) Cellulose 20:559

    Article  CAS  Google Scholar 

  15. Peydecastaing J, Vaca-Garcia C, Borredon E (2011) Cellulose 18:101

    Google Scholar 

  16. Shibakami M, Tsubouchi G, Sohma M, Hayashi M (2015) Carbohydr Polym 133:421

    Article  CAS  Google Scholar 

  17. Shibakami M, Sohma M (2017) Carbohydr Polym 155:416

    Article  CAS  Google Scholar 

  18. Shibakami M, Tsubouchi G, Hayashi M (2014) Carbohydr Polym 105:90

    Article  CAS  Google Scholar 

  19. Shibakami M, Tsubouchi G, Sohma M, Hayashi M (2015) Carbohydr Polym 119:1

    Article  CAS  Google Scholar 

  20. Shibakami M (2017) Carbohydr Polym 173:451

    Article  CAS  Google Scholar 

  21. Tamura N, Wada M, Isogai A (2009) Carbohydr Polym 77:300

    Article  CAS  Google Scholar 

  22. Okuyama K, Obata Y, Noguchi K, Kusaba T, Ito Y, Ohno S (1996) Biopolymers 38:557

    Article  CAS  Google Scholar 

  23. Marubayashi H, Yukinaka K, Enomoto-Rogers Y, Takemura A, Iwata T (2014) Carbohydr Polym 103:427

    Article  CAS  Google Scholar 

  24. Zhai W, Danjo T, Iwata T (2017) J Polym Res 25:181

    Article  Google Scholar 

  25. Zhai W, Iwata T (2019) Polym Degrad Stab 161:50

    Article  CAS  Google Scholar 

  26. Shibakami M, Sohma M (2018) Carbohydr Polym 200:239

    Article  CAS  Google Scholar 

  27. Buchanan CM, Buchanan NL, Debenham JS, Gatenholm P, Jacobsson M, Shelton MC, Watterson TL, Wood MD (2003) Carbohydr Polym 52:345

    Article  CAS  Google Scholar 

  28. Yang BY, Montgomery R (2008) Starch 60:146

    Article  CAS  Google Scholar 

  29. Buchanan CM, Parker SW (1991) Patent WO9114709

  30. Tezuka Y (1993) Carbohydr Res 241:285

    Article  CAS  Google Scholar 

  31. Tezuka Y, Imai K, Oshima M, Ito K-I (1991) Carbohydr Res 222:255

    Article  CAS  Google Scholar 

  32. Tezuka Y, Tsuchiya Y (1995) Carbohydr Res 273:83

    Article  CAS  Google Scholar 

  33. Crépy L, Miri V, Joly N, Martin P, Lefebvre J-M (2011) Carbohydr Polym 83:1812

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to KOBELCO Eco-Solutions Co. Ltd. for providing the paramylon samples used in this work. The authors are also grateful to Dr. Yuki Kawata (TA Instruments Japan Inc.) for her technical assistance with the dynamic viscoelastic analyses. This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis except for XRD were performed by Shibakami. XRD was performed by Shibakami and Sohma. The first draft of the manuscript was written by Shibakami. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Motonari Shibakami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibakami, M., Sohma, M. Effects of Long-Chain Acyl Substituents on the Thermoplasticity and Mechanical Properties of Paramylon Mixed Esters. J Polym Environ 28, 2263–2276 (2020). https://doi.org/10.1007/s10924-020-01763-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01763-2

Keywords

Navigation