当前位置: X-MOL 学术Front Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
Frontiers of Physics ( IF 6.5 ) Pub Date : 2020-07-11 , DOI: 10.1007/s11467-020-0976-2
Jing Xu , Sai Li , Tao Chen , Zheng-Yuan Xue

Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being time-dependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.

中文翻译:

超导电路最优控制的非绝热几何量子计算。

量子门是量子计算机的基本组成部分,非常脆弱。因此,实现具有高保真度的鲁棒量子门是量子操纵的最终目标。在这里,我们提出了一种在超导电路上的非绝热几何量子计算方案,以设计任意量子门,该方案既具有几何相位的鲁棒性优点,又具有与最佳控制技术相结合的能力,从而进一步增强了门的鲁棒性。具体而言,在我们的建议中,通过共振微波场驱动,可以在跨门量子比特上实现任意几何单量子比特门,而驱动的幅度和相位均与时间有关。同时,非平凡的两比特几何门可以通过两个容性耦合的跨门量子比特来实现,通过调节跨位量子位之一的频率以获得它们之间的有效谐振耦合。因此,我们的方案为实现容错固态量子计算提供了有希望的一步。
更新日期:2020-07-11
down
wechat
bug