Skip to main content
Log in

Nonadiabatic geometric quantum computation with optimal control on superconducting circuits

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being time-dependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. Ser. A 392, 45 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  2. F. Wilczek and A. Zee, Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett. 52(24), 2111 (1984)

    ADS  MathSciNet  Google Scholar 

  3. Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)

    ADS  MathSciNet  Google Scholar 

  4. P. Solinas, P. Zanardi, and N. Zanghi, Robustness of non-Abelian holonomic quantum gates against parametric noise, Phys. Rev. A 70(4), 042316 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  5. S.-L. Zhu and P. Zanardi, Geometric quantum gates that are robust against stochastic control errors, Phys. Rev. A 72, 020301(R) (2005)

    ADS  Google Scholar 

  6. P. Solinas, M. Sassetti, T. Truini, and N. Zanghi, On the stability of quantum holonomic gates, New J. Phys. 14(9), 093006 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  7. M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo, K. Singh, and D. M. Tong, Robustness of nonadiabatic holonomic gates, Phys. Rev. A 86(6), 062322 (2012)

    ADS  Google Scholar 

  8. X. B. Wang and M. Keiji, Nonadiabatic conditional geometric phase shift with NMR, Phys. Rev. Lett. 87(9), 097901 (2001)

    ADS  Google Scholar 

  9. S. L. Zhu and Z. D. Wang, Implementation of universal quantum gates based on nonadiabatic geometric phases, Phys. Rev. Lett. 89(9), 097902 (2002)

    ADS  Google Scholar 

  10. P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96(5), 052316 (2017)

    ADS  Google Scholar 

  11. T. Chen and Z. Y. Xue, Nonadiabatic geometric quantum computation with parametrically tunable coupling, Phys. Rev. Appl. 10(5), 054051 (2018)

    ADS  Google Scholar 

  12. X. Y. Chen, T. Li, and Z. Q. Yin, Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin, Sci. Bull. 64(6), 380 (2019)

    Google Scholar 

  13. T. Bækkegaard, L. B. Kristensen, N. J. S. Loft, C. K. Andersen, D. Petrosyan, and N. T. Zinner, Realization of efficient quantum gates with a superconducting qubit-qutrit circuit, Sci. Rep. 9(1), 13389 (2019)

    ADS  Google Scholar 

  14. E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  15. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherencefree subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)

    ADS  Google Scholar 

  16. G. Falci, R. Fazio, G. M. Palma, J. Siewert, and V. Vedral, Detection of geometric phases in superconducting nanocircuits, Nature 407(6802), 355 (2000)

    ADS  Google Scholar 

  17. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland, Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate, Nature 422(6930), 412 (2003)

    ADS  Google Scholar 

  18. P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, Observation of Berry’s phase in a solid-state qubit, Science 318(5858), 1889 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  19. J. M. Cui, M. Z. Ai, R. He, Z. H. Qian, X. K. Qin, Y. F. Huang, Z. W. Zhou, C. F. Li, T. Tu, and G. C. Guo, Experimental demonstration of suppressing residual geometric dephasing, Sci. Bull. 64(23), 1757 (2019)

    Google Scholar 

  20. J. Chu, D. Li, X. Yang, S. Song, Z. Han, Z. Yang, Y. Dong, W. Zheng, Z. Wang, X. Yu, D. Lan, X. Tan, and Y. Yu, Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits, Phys. Rev. Appl. 13(6), 064012 (2020)

    ADS  Google Scholar 

  21. Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, and L. Sun, Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124(23), 230503 (2020)

    ADS  Google Scholar 

  22. P. Z. Zhao, Z. Dong, Z. Zhang, G. Guo, D. M. Tong, and Y. Yin, Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit, arXiv: 1909.09970 (2019)

  23. S. B. Zheng, C. P. Yang, and F. Nori, Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts, Phys. Rev. A 93(3), 032313 (2016)

    ADS  Google Scholar 

  24. J. Jing, C. H. Lam, and L. A. Wu, Non-Abelian holonomic transformation in the presence of classical noise, Phys. Rev. A 95(1), 012334 (2017)

    ADS  Google Scholar 

  25. B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)

    ADS  Google Scholar 

  26. S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum computation on superconducting circuits with optimal control, Adv. Quantum Technol. 3(3), 2000001 (2020)

    Google Scholar 

  27. T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates, Phys. Rev. Lett. 122(8), 080501 (2019)

    ADS  Google Scholar 

  28. M.-Z. Ai, S. Li, Z. Hou, R. He, Z.-H. Qian, Z.-Y. Xue, J.-M. Cui, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Experimental realization of nonadiabatic holonomic single-qubit quantum gates with optimal control in a trapped ion, arXiv: 2006.04609 (2020)

  29. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New J. Phys. 14(9), 093040 (2012)

    ADS  MATH  Google Scholar 

  30. D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404 (2013)

    ADS  Google Scholar 

  31. M. H. Goerz, F. Motzoi, K. B. Whaley, and C. P. Koch, Charting the circuit QED design landscape using optimal control theory, npj Quantum Inf. 3, 37 (2017)

    ADS  Google Scholar 

  32. G. Bhole and J. A. Jones, Practical pulse engineering: Gradient ascent without matrix exponentiation, Front. Phys. 13(3), 130312 (2018)

    Google Scholar 

  33. G. Long, G. Feng, and P. Sprenger, Overcoming synthesizer phase noise in quantum sensing, Quantum Engineering 1(4), e27 (2019)

    Google Scholar 

  34. K. Li, Eliminating the noise from quantum computing hardware, Quantum Engineering 2(1), e28 (2020)

    Google Scholar 

  35. J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)

    ADS  Google Scholar 

  36. M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)

    ADS  Google Scholar 

  37. X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  38. M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I. J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys. 11(1), 369 (2020)

    Google Scholar 

  39. Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)

    ADS  Google Scholar 

  40. X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)

    ADS  Google Scholar 

  41. H. Fan and X. Zhu, 12 superconducting qubits for quantum walks, Front. Phys. 14(6), 61201 (2019)

    ADS  Google Scholar 

  42. J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm, Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator, Phys. Rev. A 83(1), 012308 (2011)

    ADS  Google Scholar 

  43. T. H. Wang, Z. X. Zhang, L. Xiang, Z. H. Gong, J. L. Wu, and Y. Yin, Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories, Sci. China Phys. Mech. Astron. 61(4), 047411 (2018)

    ADS  Google Scholar 

  44. T. H. Wang, Z. X. Zhang, L. Xiang, Z. L. Jia, P. Duan, W. Z. Cai, Z. H. Gong, Z. W. Zong, M. M. Wu, J. L. Wu, L. Y. Sun, Y. Yin, and G. P. Guo, The experimental realization of highfidelity “shortcut-to-adiabaticity” quantum gates in a superconducting Xmon qubit, New J. Phys. 20(6), 065003 (2018)

    ADS  Google Scholar 

  45. F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, and F. C. Wellstood, Quantum logic gates for coupled superconducting phase qubits, Phys. Rev. Lett. 91(16), 167005 (2003)

    ADS  Google Scholar 

  46. L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature 467(7315), 574 (2010)

    ADS  Google Scholar 

  47. M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo, et al., Demonstration of universal parametric entangling gates on a multi-qubit lattice, Sci. Adv. 4(2), eaao3603 (2018)

    ADS  Google Scholar 

  48. S. A. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, et al., Parametrically activated entangling gates using transmon qubits, Phys. Rev. Appl. 10(3), 034050 (2018)

    ADS  Google Scholar 

  49. X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yuan Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Li, S., Chen, T. et al. Nonadiabatic geometric quantum computation with optimal control on superconducting circuits. Front. Phys. 15, 41503 (2020). https://doi.org/10.1007/s11467-020-0976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0976-2

Keywords

Navigation