当前位置: X-MOL 学术J. Mater. Eng. Perform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Influence of Loading Paths on Mechanical Behavior and Microstructure of Mn18Cr18N Austenitic Stainless Steel
Journal of Materials Engineering and Performance ( IF 2.2 ) Pub Date : 2020-07-08 , DOI: 10.1007/s11665-020-04922-7
Wenwu He , Fei Li , Huayu Zhang , Huiqin Chen

The mechanical behavior of Mn18Cr18N steel along different loading paths was investigated at room temperature. In compression–tensile loading paths, the strain hardening behavior depends on subsequent tensile loading directions. When the subsequent loading axis coincides with the previous loading axis, the strain hardening path coincides with the strain hardening path in previous strain stage. When the subsequent loading axis changed, the subsequent strain hardening rate is remarkable greater than that in the previous strain hardening stage. The tensile ductility is different along different loading paths. In consecutive compression–tensile loading paths, the tensile ductility increased first and then decreased. Dislocation rearrangement caused good ductility during the tensile loading. In non-consecutive compression–tensile loading paths, the tensile ductility decreased gradually. Dislocation multiplication occurred rapidly during the subsequent tensile loading. Stress hardening is remarkable during compression–tensile consecutive cyclic loading when the strain amplitude is greater than 0.01. The maximum tensile stress can be reached up to 1549.6 MPa at 3 cycles with 0.15 strain amplitude, which is an increase of 395.4 MPa compared to the simple tensile loading. During complex loading paths, dislocation configurations and the substructures not only depend on the accumulated strains but also on the loading paths.



中文翻译:

加载路径对Mn18Cr18N奥氏体不锈钢力学行为和组织的影响

在室温下研究了Mn18Cr18N钢沿不同载荷路径的力学行为。在压缩拉伸载荷路径中,应变硬化行为取决于随后的拉伸载荷方向。当随后的加载轴与先前的加载轴重合时,应变硬化路径与先前应变阶段的应变硬化路径重合。当后续的加载轴发生变化时,后续的应变硬化率显着大于先前的应变硬化阶段。沿着不同的加载路径,拉伸延性是不同的。在连续的压缩-拉伸载荷路径中,拉伸延性先增加然后降低。位错重排在拉伸载荷期间引起良好的延展性。在非连续压缩拉伸加载路径中,拉伸延展性逐渐降低。在随后的拉伸载荷过程中,位错倍增迅速发生。当压缩振幅大于0.01时,在压缩-拉伸连续循环加载过程中,应力硬化非常明显。在三个循环中,最大拉伸应力可以达到1549.6 MPa,应变幅度为0.15,与简单的拉伸载荷相比,增加了395.4 MPa。在复杂的加载路径中,位错配置和子结构不仅取决于累积的应变,还取决于加载路径。在三个循环中,最大拉伸应力可以达到1549.6 MPa,应变幅度为0.15,与简单的拉伸载荷相比,增加了395.4 MPa。在复杂的加载路径中,位错配置和子结构不仅取决于累积的应变,还取决于加载路径。在三个循环中,最大拉伸应力可以达到1549.6 MPa,应变幅度为0.15,与简单的拉伸载荷相比,增加了395.4 MPa。在复杂的加载路径中,位错配置和子结构不仅取决于累积的应变,还取决于加载路径。

更新日期:2020-07-08
down
wechat
bug