Skip to main content

Advertisement

Log in

The Influence of Loading Paths on Mechanical Behavior and Microstructure of Mn18Cr18N Austenitic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical behavior of Mn18Cr18N steel along different loading paths was investigated at room temperature. In compression–tensile loading paths, the strain hardening behavior depends on subsequent tensile loading directions. When the subsequent loading axis coincides with the previous loading axis, the strain hardening path coincides with the strain hardening path in previous strain stage. When the subsequent loading axis changed, the subsequent strain hardening rate is remarkable greater than that in the previous strain hardening stage. The tensile ductility is different along different loading paths. In consecutive compression–tensile loading paths, the tensile ductility increased first and then decreased. Dislocation rearrangement caused good ductility during the tensile loading. In non-consecutive compression–tensile loading paths, the tensile ductility decreased gradually. Dislocation multiplication occurred rapidly during the subsequent tensile loading. Stress hardening is remarkable during compression–tensile consecutive cyclic loading when the strain amplitude is greater than 0.01. The maximum tensile stress can be reached up to 1549.6 MPa at 3 cycles with 0.15 strain amplitude, which is an increase of 395.4 MPa compared to the simple tensile loading. During complex loading paths, dislocation configurations and the substructures not only depend on the accumulated strains but also on the loading paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Zhu, M. Zhang, and Y. Wang, Electron Backscattered Diffraction Study of Microstructural Evolution During Isothermal Deformation of High-N Mn18Cr18 Alloy, Metall. Mater. Trans. B, 2019, 50(4), p 1662–1673

    Article  CAS  Google Scholar 

  2. Z. Wang, H. Xue, W. Fu, Fracture Behavior of High-Nitrogen Austenitic Stainless Steel Under Continuous Cooling: Physical Simulation of Free-Surface Cracking of Heavy Forgings. Metall. Mater. Trans. A, 2018, 49(5), p 1470–1474

    Article  CAS  Google Scholar 

  3. J. Li, G. Zhao, F. Qin, and H. Chen, The Influence of Hot-Rolling Reductions and Passes on the Microstructure and Mechanical Properties of Mn18Cr18N ESR Steel, Mater. Tehnol., 2018, 52(6), p 827–833

    Article  CAS  Google Scholar 

  4. J.H. Shin, Y. Kim, and J.W. Lee, Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs, Met. Mater. Int., 2018, 24, p 1412–1421

    Article  CAS  Google Scholar 

  5. F. Li, H. Zhang, W. He, X. Zhao, and H. Chen, Stress Softening and Hardening During Compression and Tensile Consecutive Cyclic Loading of Mn18Cr18N Austenitic Stainless Steel, Mater. Sci. Eng. A, 2017, 704, p 138–146

    Article  CAS  Google Scholar 

  6. F.M. Qin, H. Zhu, Z.X. Wang, X.D. Zhao, W.W. He, and H.Q. Chen, Dislocation and Twinning Mechanisms for Dynamic Recrystallization of As-cast Mn18Cr18N steel, Mater. Sci. Eng. A, 2017, 684, p 634–644

    Article  CAS  Google Scholar 

  7. Z. Wang, X. Ning, Q. Meng, S. Sun, and W. Fu, A New Insight into Manufacturing Fine-Grained Heavy Retaining Rings, Mater. Des., 2016, 103, p 152–159

    Article  CAS  Google Scholar 

  8. C.W. Shao, F. Shi, and X.W. Li, Influence of Cyclic Stress Amplitude on Mechanisms of Deformation of a High Nitrogen Austenitic Stainless Steel, Mater. Sci. Eng. A, 2016, 667, p 208–216

    Article  CAS  Google Scholar 

  9. G. Stein, I. Hucklenbroich, and H. Feichtinger, Current and Future Applications of High Nitrogen Steels, Mater. Sci. Forum., 1999, 318, p 151–160

    Article  Google Scholar 

  10. F. Li, X. Zhao, H. Zhang, W. He, H. Chen, and H. Guo, Bauschinger Effect of Mn18Cr18N Austenitic Stainless Steel, Wuhan Univ, Technol.-Mat. Sci. Edit., 2020, 35, p 399–406

    CAS  Google Scholar 

  11. J.H. Shin and J.W. Lee, Effects of Twin Intersection on the Tensile Behavior in High Nitrogen Austenitic Stainless Steel, Mater. Charact., 2014, 91, p 19–25

    Article  CAS  Google Scholar 

  12. T.H. Lee, S.J. Kim, S.H. Kang, K.H. Oh, S. Takaki, TEM & EBSD Study on Deformation Behavior of High Nitrogen Austenitic Fe-18Cr-18Mn-2Mo-0.9N Stainless Steel, Solid. State. Phenom., 2007, 124–126, p 1333–1336

    Google Scholar 

  13. T.H. Lee, C.S. Oh, S.J. Kim, and S. Takaki, Deformation Twinning in High-Nitrogen Austenitic Stainless Steel, Acta Mater., 2007, 55(11), p 3649–3662

    Article  CAS  Google Scholar 

  14. S. Feng, X.W. Li, Q. Yang, and M. Liu, Effects of Cold Deformation and Aging Process on Precipitation Behavior and Mechanical Properties of Fe–18, Steel. Res. Int., 2013, 84(10), p 1034–1039

    Google Scholar 

  15. C. Gao, T. Ren, M. Liu, Low-Cycle Fatigue Characteristics of Cr18Mn18N0.6 Austenitic Steel Under Strain Controlled Condition at 100 °C, Int. J. Fatigue, 2018, 118, p 35–43

    Article  Google Scholar 

  16. C.W. Shao, F. Shi, and X.W. Li, Cyclic Deformation Behavior of Fe-18Cr-18Mn-0.63N Nickel-Free High-Nitrogen Austenitic Stainless Steel, Metal. Mater. Trans. A, 2015, 46(4), p 1610–1620

    Article  CAS  Google Scholar 

  17. P. Changizian, A. Zarei-Hanzaki, and H. Abedi, On the Recrystallization Behavior of Homogenized AZ81 Magnesium Alloy: The Effect of Mechanical Twins and γ Precipitates, Mater. Sci. Eng. A, 2012, 558, p 44–51

    Article  CAS  Google Scholar 

  18. G. Sun, Y. Zhang, S. Sun, J. Hu, Z. Jiang, C. Ji, and J. Lian, Plastic Flow Behavior and its Relationship to Tensile Mechanical Properties of High Nitrogen Nickel-Free Austenitic Stainless Steel, Mater. Sci. Eng. A, 2016, 662, p 432–442

    Article  CAS  Google Scholar 

  19. P. Dusicka, A.M. Itani, and I.G. Buckle, Cyclic Response of Plate Steels Under Large Inelastic Strains, J. Cons. Steel. Res., 2007, 63(2), p 156–164

    Article  Google Scholar 

  20. B. Chang and Z. Zhang, Cyclic Deformation Behavior in a Nitrogen-Alloyed Austenitic Stainless Steel in Terms of the Evolution of Internal Stress and Microstructure, Mater. Sci. Eng. A, 2012, 556, p 625–632

    Article  CAS  Google Scholar 

  21. X. Feaugas, On the Origin of the Tensile Flow Stress in the Stainless Steel AISI, 316L at 300 K: Back Stress and Effective Stress, Acta. Mater., 1999, 47, p 3617–3632

    Article  CAS  Google Scholar 

  22. W. Tirry, M. Nixon, O. Cazacu, F. Coghe, and L. Rabet, The Importance of Secondary and Ternary Twinning in Compressed Ti, Scripta. Mater., 2011, 64(9), p 840–843

    Article  CAS  Google Scholar 

  23. Q. Yu, Y. Jiang, and J. Wang, Tension-Compression-Tension Tertiary Twins in Coarse Grained Polycrystalline Pure Magnesium at Room Temperature, Phil. Mag. Lett., 2015, 95, p 194–201

    Article  CAS  Google Scholar 

  24. S. Xu, M. Gong, C. Schuman, J. Lecomte, X. Xie, and J. Wang, Sequential 102 Twinning Stimulated by Other Twins in Titanium, Acta. Mater., 2017, 132, p 57–68

    Article  CAS  Google Scholar 

  25. M. Yoo, Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals, Metall. Mater. Trans. A, 1981, 12, p 409–418

    Article  CAS  Google Scholar 

  26. A.A. Salem, S.R. Kalidindi, and R.D. Doherty, Strain Hardening of Titanium: Role of Deformation Twinning, Acta. Mater., 2003, 51(14), p 4225–4237

    Article  CAS  Google Scholar 

  27. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, and S.X. Li, Deformation Twinning in Polycrystalline Copper at Room Temperature and Low Strain Rate, Acta. Mater., 2006, 54(3), p 655–665

    Article  CAS  Google Scholar 

  28. S. Gallée, P.Y. Manach, and S. Thuillier, Mechanical Behavior of a Metastable Austenitic Stainless Steel Under Simple and Complex Loading Paths, Mater. Sci. Eng. A, 2007, 466(1-2), p 47–55

    Article  Google Scholar 

  29. S. Thuillier and P.Y. Manach, Comparison of the Work-Hardening of Metallic Sheets Using Tensile and Shear Strain Paths, Int. J. Plasticity, 2009, 25(5), p 733–751

    Article  CAS  Google Scholar 

  30. B. Chang and Z. Zhang, Low Cycle Fatigue Behavior of a High Nitrogen Austenitic Stainless Steel Under Uniaxial and Non-proportional Loadings Based on the Partition of Hysteresis Loops, Mater. Sci. Eng. A, 2012, 547, p 72–79

    Article  CAS  Google Scholar 

  31. P. Feltham and J.D. Meakin, Work-Hardening in FCC Metal Crystals, Acta. Metall., 1957, 5(10), p 555–564

    Article  CAS  Google Scholar 

  32. T. Takemoto, K. Mukai, and K. Hoshino, Effect of Nitrogen on Low Cycle Fatigue Behavior of Austenitic Stainless Steel, Trans. ISIJ, 1986, 26, p 337–344

    Article  Google Scholar 

  33. J. Bauschinger, Changes of the Elastic Limit and the Modulus of Elasticity on Various Metals, Zivilingenieur., 1881, 27, p 289–348

    Google Scholar 

  34. Y. Xiang and J.J. Vlassak, Bauschinger Effect in Thin Metal Films, Scripta Mater., 2005, 53(2), p 177–182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (No. 51575372), Natural Science Foundation of Shanxi Province (No. 2014011015-4), Science and Technology Research Plan (Industrial) Project of Shanxi Province, China (No. 201603D121006-2), the Fund for Shanxi Key Subjects Construction. The authors would like to thank the support of Shanghai Dianji University, the Shanghai Research Center of Engineering Technology for Large Parts Thermal Manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Li, F., Zhang, H. et al. The Influence of Loading Paths on Mechanical Behavior and Microstructure of Mn18Cr18N Austenitic Stainless Steel. J. of Materi Eng and Perform 29, 4708–4715 (2020). https://doi.org/10.1007/s11665-020-04922-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04922-7

Keywords

Navigation