当前位置: X-MOL 学术Discret. Comput. Geom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Graphs Behind Reuleaux Polyhedra
Discrete & Computational Geometry ( IF 0.6 ) Pub Date : 2020-07-06 , DOI: 10.1007/s00454-020-00220-0
Luis Montejano , Eric Pauli , Miguel Raggi , Edgardo Roldán-Pensado

This work is about graphs arising from Reuleaux polyhedra. Such graphs must necessarily be planar, 3-connected and strongly self-dual. We study the question of when these conditions are sufficient. If G is any such graph, each vertex has an opposite face with isomorphism $$\tau :G \rightarrow G^*$$ τ : G → G ∗ (where $$G^*$$ G ∗ is the unique dual graph), a metric mapping is a map $$\eta :V(G) \rightarrow \mathbb R^3$$ η : V ( G ) → R 3 such that the diameter of $$\eta (G)$$ η ( G ) is 1 and for every pair of vertices ( u , v ) such that $$u\in \tau (v)$$ u ∈ τ ( v ) we have $${{\,\mathrm{dist}\,}}{(\eta (u),\eta (v))}= 1$$ dist ( η ( u ) , η ( v ) ) = 1 . If $$\eta $$ η is injective, it is called a metric embedding . Our contributions are twofold: Firstly, we prove that any planar, 3-connected, strongly self-dual graph has a metric mapping to the vertices of a tetrahedron. Secondly, we develop algorithms that allow us to obtain every such graph with up to 14 vertices and we construct (numerically) metric embeddings for it. From these two facts we conjecture that every such graph is realizable as a Reuleaux polyhedron in $$\mathbb R^3$$ R 3 . In previous work the first and last authors described a method to construct a constant-width body from a Reuleaux polyhedron. So in essence, we also construct (numerically, but with very high precision) hundreds of new examples of constant-width bodies.

中文翻译:

鲁洛多面体背后的图形

这项工作是关于由鲁洛多面体产生的图。这样的图必须是平面的、三连通的和强自对偶的。我们研究什么时候这些条件是充分的问题。如果 G 是任何这样的图,每个顶点都有一个同构的相反面 $$\tau :G \rightarrow G^*$$ τ : G → G ∗ (其中 $$G^*$$ G ∗ 是唯一的对偶图),度量映射是映射 $$\eta :V(G) \rightarrow \mathbb R^3$$ η : V ( G ) → R 3 使得 $$\eta (G)$$ η 的直径( G ) 是 1 并且对于每对顶点 ( u , v ) 使得 $$u\in \tau (v)$$ u ∈ τ ( v ) 我们有 $${{\,\mathrm{dist}\ ,}}{(\eta (u),\eta (v))}= 1$$ dist ( η ( u ) , η ( v ) ) = 1 。如果 $$\eta $$ η 是单射的,则称为度量嵌入。我们的贡献是双重的:首先,我们证明了任何平面的、3-连通的、强自对偶图具有到四面体顶点的度量映射。其次,我们开发的算法允许我们获得最多 14 个顶点的每个这样的图,并为它构建(数字)度量嵌入。根据这两个事实,我们推测每个这样的图都可以实现为 $$\mathbb R^3$$ R 3 中的鲁洛多面体。在之前的工作中,第一作者和最后一位作者描述了一种从鲁洛多面体构造等宽体的方法。因此,本质上,我们还构建了(数量上,但精度非常高)数百个恒定宽度主体的新示例。根据这两个事实,我们推测每个这样的图都可以实现为 $$\mathbb R^3$$ R 3 中的鲁洛多面体。在之前的工作中,第一作者和最后一位作者描述了一种从鲁洛多面体构造等宽体的方法。因此,本质上,我们还构建了(数量上,但精度非常高)数百个等宽体的新示例。根据这两个事实,我们推测每个这样的图都可以实现为 $$\mathbb R^3$$ R 3 中的鲁洛多面体。在之前的工作中,第一作者和最后一位作者描述了一种从鲁洛多面体构造等宽体的方法。因此,本质上,我们还构建了(数量上,但精度非常高)数百个等宽体的新示例。
更新日期:2020-07-06
down
wechat
bug