Skip to main content
Log in

The Graphs Behind Reuleaux Polyhedra

  • Ricky Pollack Memorial Issue
  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

This work is about graphs arising from Reuleaux polyhedra. Such graphs must necessarily be planar, 3-connected and strongly self-dual. We study the question of when these conditions are sufficient. If G is any such graph, each vertex has an opposite face with isomorphism \(\tau :G \rightarrow G^*\) (where \(G^*\) is the unique dual graph), a metric mapping is a map \(\eta :V(G) \rightarrow \mathbb R^3\) such that the diameter of \(\eta (G)\) is 1 and for every pair of vertices (uv) such that \(u\in \tau (v)\) we have \({{\,\mathrm{dist}\,}}{(\eta (u),\eta (v))}= 1\). If \(\eta \) is injective, it is called a metric embedding. Our contributions are twofold: Firstly, we prove that any planar, 3-connected, strongly self-dual graph has a metric mapping to the vertices of a tetrahedron. Secondly, we develop algorithms that allow us to obtain every such graph with up to 14 vertices and we construct (numerically) metric embeddings for it. From these two facts we conjecture that every such graph is realizable as a Reuleaux polyhedron in \(\mathbb R^3\). In previous work the first and last authors described a method to construct a constant-width body from a Reuleaux polyhedron. So in essence, we also construct (numerically, but with very high precision) hundreds of new examples of constant-width bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anciaux, H., Guilfoyle, B.: On the three-dimensional Blaschke–Lebesgue problem. Proc. Am. Math. Soc. 139(5), 1831–1839 (2011)

    Article  MathSciNet  Google Scholar 

  2. Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)

    Article  MathSciNet  Google Scholar 

  3. Bezdek, K., Lángi, Z.S., Naszódi, M., Papez, P.: Ball-polyhedra. Discrete Comput. Geom. 38(2), 201–230 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bezdek, K., Naszódi, M.: Rigidity of ball-polyhedra in Euclidean \(3\)-space. Eur. J. Combin. 27(2), 255–268 (2006)

    Article  MathSciNet  Google Scholar 

  5. Brinkmann, G., McKay, B.D.: Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem. 58(2), 323–357 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Chakerian, G.D., Groemer, H.: Convex bodies of constant width. Convexity and its Applications, pp. 49–96. Birkhäuser, Basel (1983)

    Chapter  Google Scholar 

  7. Gruenbaum, B.: A proof of Vázsonyi’s conjecture. Bull. Res. Council Isr. Sect. A 6, 77–78 (1956)

    MathSciNet  Google Scholar 

  8. Heppes, A.: Beweis einer Vermutung von A. Vázsonyi. Acta Math. Acad. Sci. Hung. 7, 463–466 (1956)

    Article  MathSciNet  Google Scholar 

  9. Kupitz, Y.S., Martini, H., Perles, M.A.: Ball polytopes and the Vázsonyi problem. Acta Math. Hung. 126(1–2), 99–163 (2010)

    Article  Google Scholar 

  10. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory Ser. A 25(3), 319–324 (1978)

    Article  MathSciNet  Google Scholar 

  11. Lovász, L.: Self-dual polytopes and the chromatic number of distance graphs on the sphere. Acta Sci. Math. (Szeged) 45(1–4), 317–323 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)

    Article  MathSciNet  Google Scholar 

  13. Martini, H., Montejano, L., Oliveros, D.: Bodies of Constant Width. Birkhäuser, Cham (2019)

    Book  Google Scholar 

  14. Montejano, L., Roldán-Pensado, E.: Meissner polyhedra. Acta Math. Hung. 151(2), 482–494 (2017)

    Article  MathSciNet  Google Scholar 

  15. Sallee, G.T.: Reuleaux polytopes. Mathematika 17, 315–323 (1970)

    Article  MathSciNet  Google Scholar 

  16. Servatius, B., Servatius, H.: The \(24\) symmetry pairings of self-dual maps on the sphere. Discrete Math. 140(1–3), 167–183 (1995)

    Article  MathSciNet  Google Scholar 

  17. Servatius, B., Servatius, H.: Self-dual graphs. Discrete Math. 149(1–3), 223–232 (1996)

    Article  MathSciNet  Google Scholar 

  18. Storn, R.: On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing, pp. 519–523. IEEE (1996)

  19. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  20. Straszewicz, S.: Sur un probleme géométrique de P. Erdös. Bull. Acad. Polon. Sci. Cl. III 5, 39–40 (1957)

  21. Whitney, H.: \(2\)-Isomorphic graphs. Am. J. Math. 55(1–4), 245–254 (1933)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo Roldán-Pensado.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to the memory of Ricky Pollack

This research was supported by PAPIIT Projects IA102118, IN112614 and IN116919, and CONACyT Project 166306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montejano, L., Pauli, E., Raggi, M. et al. The Graphs Behind Reuleaux Polyhedra. Discrete Comput Geom 64, 1013–1022 (2020). https://doi.org/10.1007/s00454-020-00220-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00220-0

Keywords

Mathematics Subject Classification

Navigation