当前位置: X-MOL 学术Kinet. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol
Kinetics and Catalysis ( IF 1.1 ) Pub Date : 2020-06-29 , DOI: 10.1134/s0023158420030180
A. A. Shteinman

Abstract

A study of methane monooxygenase (MMO) mechanisms in enzymology and the problem of selective methane oxidation in chemistry are two parallel related fundamental directions that attract the attention of many scientists all over the world. For a long time, selective methane oxidation is considered as the strongest challenge in catalysis from the standpoint of practical applications. In spite of great efforts, no process acceptable for use in industry has yet been found for the direct conversion of methane to methanol and this problem still remains highly relevant. There are high expectations connected with MMOs, which are capable of transforming methane into methanol with a selectivity of up to 100% under natural environmental conditions. This review discusses the results of long and dramatic studies that have made it possible to elucidate structures of active sites and puzzling mechanisms of the two most studied MMOs: iron-containing soluble methane monooxygenase (sMMO) and copper-containing membrane-bound particulate methane monooxygenase (pMMO). Main attention is paid to various bioinspired models of these MMOs, both homogeneous and heterogeneous ones. The recent improvement of heterogeneous chemical analogues of MMOs, which effectively catalyze the direct selective oxidation of methane to methanol by hydrogen peroxide or O2, undoubtedly opens up new horizons for the chemical industry and has been actively discussed in recent years with regard to adaptation to modern technological requirements.


中文翻译:

生物启发的甲烷氧化:从甲烷单加氧酶的学术模型到甲烷直接转化为甲醇的过程

摘要

对酶学中的甲烷单加氧酶(MMO)机理的研究以及化学中选择性甲烷氧化的问题是两个平行相关的基本方向,吸引了全世界许多科学家的注意。长期以来,从实际应用的角度来看,选择性甲烷氧化被认为是催化领域最严峻的挑战。尽管付出了巨大的努力,但仍未发现可将甲烷直接转化为甲醇的工业可接受的方法,并且该问题仍然非常重要。人们对MMO寄予厚望,它们在自然环境条件下能够将甲烷转化为甲醇,选择性高达100%。这篇综述讨论了长期而戏剧性的研究结果,这些研究使得阐明两个研究最多的MMO的活性位点和令人困惑的机制成为可能:含铁的可溶性甲烷单加氧酶(sMMO)和含铜的膜结合颗粒状甲烷单加氧酶(pMMO)。主要关注这些MMO的各种生物启发模型,包括均质模型和异质模型。MMO异构化学类似物的最新改进,可有效催化过氧化氢或O将甲烷直接选择性氧化为甲醇 主要关注这些MMO的各种生物启发模型,包括均质模型和异质模型。MMO异构化学类似物的最新改进,可有效催化过氧化氢或O将甲烷直接选择性氧化为甲醇 主要关注这些MMO的各种生物启发模型,包括均质模型和异质模型。MMO异构化学类似物的最新改进,可有效催化过氧化氢或O将甲烷直接选择性氧化为甲醇毫无疑问,图2无疑为化学工业开辟了新的视野,并且近年来就适应现代技术要求进行了积极的讨论。
更新日期:2020-06-29
down
wechat
bug