Skip to main content
Log in

Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A study of methane monooxygenase (MMO) mechanisms in enzymology and the problem of selective methane oxidation in chemistry are two parallel related fundamental directions that attract the attention of many scientists all over the world. For a long time, selective methane oxidation is considered as the strongest challenge in catalysis from the standpoint of practical applications. In spite of great efforts, no process acceptable for use in industry has yet been found for the direct conversion of methane to methanol and this problem still remains highly relevant. There are high expectations connected with MMOs, which are capable of transforming methane into methanol with a selectivity of up to 100% under natural environmental conditions. This review discusses the results of long and dramatic studies that have made it possible to elucidate structures of active sites and puzzling mechanisms of the two most studied MMOs: iron-containing soluble methane monooxygenase (sMMO) and copper-containing membrane-bound particulate methane monooxygenase (pMMO). Main attention is paid to various bioinspired models of these MMOs, both homogeneous and heterogeneous ones. The recent improvement of heterogeneous chemical analogues of MMOs, which effectively catalyze the direct selective oxidation of methane to methanol by hydrogen peroxide or O2, undoubtedly opens up new horizons for the chemical industry and has been actively discussed in recent years with regard to adaptation to modern technological requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sazinsky, M.H. and Lippard, S.J., Metal Ions in Life Sciences, New York: Springer, 2015, vol. 15, p. 205.

    Google Scholar 

  2. Sirajuddin, S. and Rosenzweig, A.C., Biochemistry, 2015, vol. 54, no. 14, p. 2283.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Banerjee, R., Jones, J.C., and Lipscomb, J.D., Annu. Rev. Biochem., 2019, vol. 88, p. 409.

    CAS  PubMed  Google Scholar 

  4. Ward, T.R., ACS Cent. Sci., 2019, vol. 5, p. 1732.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rittle, J. and Green, M.T., Science, vol. 330, p. 933.

  6. Puri, M. and Que, L.Jr., Acc. Chem. Res., 2015, vol. 48, p. 2443.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Friedle, S., Reisner, E., and Lippard, S.J., Chem. Soc. Rev., 2010, vol. 39, p. 2768.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Westerheide, L., Pascaly, M., and Krebs, B., Curr. Opin. Chem. Biol., 2000, vol. 4, p. 235.

    CAS  PubMed  Google Scholar 

  9. Que, L. and Tolman, W.B., Nature, 2008, vol. 455, p. 333.

    CAS  PubMed  Google Scholar 

  10. Poulos, T.L., Chem. Rev., 2014, vol. 114, p. 3919.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Costas, M., Mehn, M.P., Jensen, M.P., and Que, L., Jr., Chem. Rev., 2004, vol. 104, p. 939.

    CAS  PubMed  Google Scholar 

  12. Solomon, E.I., Brunold, T.C., Davis, M.I., Kemsley, J.N., Lee, S.-K., Lehnert, N., Neese, F., Skulan, A.J., Yang, Y.-S., and Zhou, J., Chem. Rev., 2000, vol. 100, p. 235.

    CAS  PubMed  Google Scholar 

  13. Lee, S.J., J. Microbiol., 2016, vol. 54, p. 277.

    CAS  PubMed  Google Scholar 

  14. Shteinman, A.A., FEBS Lett., 1995, vol. 362, p. 5.

    CAS  PubMed  Google Scholar 

  15. Shu, L., Nesheim, J.C., Kauffmann, K., Münck, E., Lipscomb, J.D., and Que, L., Jr., Science, 1997, vol. 275, p. 515.

    CAS  PubMed  Google Scholar 

  16. Shan, X. and Que, L., Jr., J. Inorg. Biochem., 2006, vol. 100, p. 421.

    CAS  PubMed  Google Scholar 

  17. Gherman, B.F., Baik, M.-H., Lippard, S.J., and Friesner, R.A., J. Am. Chem. Soc., 2004, vol. 126, p. 2978.

    CAS  PubMed  Google Scholar 

  18. Mai, B.K. and Kim, Y., Chem. Eur. J., 2014, vol. 20, p. 6532.

    CAS  PubMed  Google Scholar 

  19. Xue, G., DeHont, R., Münck, E., and Que, L., Jr., Nat. Chem., 2010, vol. 2, p. 400.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue, G., Wang, D., DeHont, R., Fiedler, A.T., Shan, X., Münck, E., and Que, L.Jr., Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, p. 20713.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tinberg, C.E. and Lippard, S.J., Acc. Chem. Res., 2011, vol. 44, p. 280.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Do, L.H., Hayashi, T., Moënne-Loccoz, P., and Lippard, S.J., J. Am. Chem. Soc., 2010, vol. 132, p. 1273.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kodera, M., Kawahara, Y., Hitomi, Y., Nomura, T., Ogura, T., and Kobayashi, Y., J. Am. Chem. Soc., 2012, vol. 134, p. 13236.

    CAS  PubMed  Google Scholar 

  24. Kodera, M., Itoh, M., Kano, K., Funabiki, T., and Reglier, M., Angew Chem, Int Ed., 2005, vol. 44, p. 7104.

    CAS  Google Scholar 

  25. Friedle, S., Reisner, E., and Lippard, S.J., Chem. Soc. Rev., 2010, vol. 39, p. 2768.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Do, L.H. and Lippard, S.J., J. Inorg. Biochem., 2011, vol. 105, p. 1774.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sievert, I. and Limberg, C., Chem. Eur. J., 2009, vol. 15, p. 10316.

    Google Scholar 

  28. Sankaralingam, M. and Palaniandavar, M., Polyhedron, 2014, vol. 67, p. 171.

    CAS  Google Scholar 

  29. Kodera, M., Shimakoshi, H., and Kano, K., Chem.Commun., 1996, vol. 15, vol. 1737.

    Google Scholar 

  30. Kodera, M., Tsuji, T., Yasunaga, T., Kawahara, Y., Hirano, T., Hitomi, Y., Nomura, T., Ogura, T., Kobayashi, Y., Sajith, P.K., Shiota, Y., and Yoshizawa, K., Chem. Sci., 2014, vol. 5, p. 2282.

    CAS  Google Scholar 

  31. Kulikova, V.S., Gritsenko, O.N., and Shteinman, A.A., Mendeleev Commun., 1996, p. 119.

  32. Costas, M., Chen, K., and Que, L., Jr., Coord. Chem. Rev., 2000, vols. 200–202, p. 517.

    Google Scholar 

  33. Gutkina, E.A., Trukhan, V.M., Pierpont, C.G., Mkoyan, S., Strelets, V.V., Nordlander, E., and Shteinman, A.A., Dalton Trans., 2006, p. 492.

  34. Trukhan, V.M., Polukhov, V.V., Sulimenkov, I.V., Ovanesyan, N.S., Koval’chuk, N.A., Dodonov, A.F., and Shteinman, A.A., Kinet. Catal., 1998, vol. 39, p. 788.

    CAS  Google Scholar 

  35. Gutkina, E.A., Trukhan, V.M., and Shteinman, A.A., Kinet. Catal., 2003, vol. 44, p. 751.

    CAS  Google Scholar 

  36. Turitsyna, E.A., Trukhan, V.M., and Shteinman, A.A., Russ. Chem. Bull., 2011, vol. 60, p. 2088.

    CAS  Google Scholar 

  37. Das, B., Al-Hunaiti, A., Haukka, M., Demeshko, S., Meyer, S., Shteinman, A.A., Meyer, F., Repo, T., and Nordlander, E., Eur. J. Inorg. Chem., 2015, vol. 21, p. 3590.

    Google Scholar 

  38. Nam, W., Acc. Chem. Res., 2007, vol. 40, p. 522.

    CAS  PubMed  Google Scholar 

  39. Que, L., Jr., Acc. Chem. Res., 2007, vol. 40, p. 493.

    CAS  PubMed  Google Scholar 

  40. Friedle, S., Reisner, E., and Lippard, S.J., Chem. Soc. Rev., 2010, vol. 39, p. 2768.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jasniewski, A.J. and Que, L., Jr., Chem. Rev., 2018, vol. 118, p. 2554.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue, G., Fiedler, A.T., Martinho, M., Münck, E., and Que, L., Jr., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, p. 20615.

    CAS  PubMed Central  Google Scholar 

  43. Xue, G., Pokutsa, A., and Que, L., J. Am. Chem. Soc., 2011, vol. 133, p. 16657.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kal, S. and Que, L., Angew. Chem., Int. Ed., 2019. https://doi.org/10.1002/anie.201903465

  45. Bernasconi, L., Belanzoni, P., and Baerends, E.J., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 15272.

    CAS  PubMed  Google Scholar 

  46. Banerjee, R., Proshlyakov, Y., Lipscomb, J., and Proshlyakov, D.A., Nature, 2015, vol. 518, p. 431.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grzyska, P.K., Appelman, E.H., Hausinger, R.P., and Proshllyakov, D.A., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, p. 3982.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilkinson, E.C., Dong, Y.H., Zang, Y., Fujii, H., Fraczkiewicz, R., Fraczkiewicz, G., Czernuszewicz, R.S., and Que, L., Jr., J. Am. Chem. Soc., 1998, vol. 120, p. 955.

    CAS  Google Scholar 

  49. Shteinman, A.A., J. Biol. Inorg. Chem., 1998, vol. 3, p. 325.

    CAS  Google Scholar 

  50. Bauer, M., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 13827.

    CAS  PubMed  Google Scholar 

  51. Proux, O., Lahera, E., Del Net, W., Kieffer, I., Rovezzi, M., Testemale, D., Irar, M., Thomas, S., Aguilar-Tapia, A., Bazarkina, E.F., Prat, A., Tella, M., Auffan, M., Rose, J., and Hazemann, J.L., J. Environ. Qual., 2017, vol. 46, p. 1146.

    CAS  PubMed  Google Scholar 

  52. Xue, G., Geng, C., Ye, S., Fiedler, A.T., Neese, F., and Que, L., Inorg.Chem., 2013, vol. 52, vol. 3976.

    Google Scholar 

  53. Castillo, R.G., Banerjee, R., Allpress, C.J., Rohde, G.T., Bill, E., Que, L., Jr., Lipscomb, J.D., and DeBeer, S., J. Am. Chem. Soc., 2017, vol. 139, p. 18024.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cutsail III, G.E., Banerjee, R., Zhou, A., Que, L., Jr., Lipscomb, D., and DeBeer, S., J. Am. Chem. Soc., 2018, vol. 140, p. 16807.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Balasubramanian, R., Smith, S.M., Rawat, S., Yatsunyk, L.A., Stemmler, T.L., and Rosenzweig, A., Nature, 2010, vol. 465, p. 115.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ross, M.O., MacMillan, F., Wang, J., Nisthal, A., Lawton, T.J., Olafson, B.D., Mayo, S.L., Rosenzweig, A.C., and Hoffman, B.M., Science, 2019, vol. 364, p. 566.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chan, S.I. and Yu, S.S.-F., Acc. Chem. Res., 2008, vol. 41, p. 969.

    CAS  PubMed  Google Scholar 

  58. Martinho, M., Choi, D.W., DiSpirito, A.A., Anttholine, W.E., Semrau, J.D., and Münck, E., J. Am. Chem. Soc., 2007, vol. 129, p. 15783.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lieberman, R.L. and Rosenzweig, A.C., Nature, 2005, vol. 434, p. 177.

    CAS  PubMed  Google Scholar 

  60. Culpepper, M.A., Cutsail, G.E., Gunderson, W.A., Hoffman, B.M., and Rosenzweig, A.C., J. Am. Chem. Soc., 2014, vol. 136, p. 11767.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chan, S.I. and Yu, S.S.-F., Nat. Catal., 2019, vol. 2, p. 286.

    CAS  Google Scholar 

  62. Shimokawa, C., Teraoka, J., Tachi, Y., and Itoh, S., J. Inorg. Biochem., 2006, vol. 100, p. 1118.

    CAS  PubMed  Google Scholar 

  63. Haack, P. and Limberg, C., Angew. Chem., Int. Ed., 2014, vol. 53, p. 4282.

    CAS  Google Scholar 

  64. Liu, C.C., Lin, T.S., Chan, S.I., and Mou, C.Y., J. Catal., 2015, vol. 322, p. 139.

    CAS  Google Scholar 

  65. Salvadeo, E., Dubois, L., and Latour, J.-M., Coord. Chem. Rev., 2018, vol. 374, p. 345.

    CAS  Google Scholar 

  66. Chen, P.P.Y. and Chan, S.I., J. Inorg. Biochem., 2006, vol. 100, p. 801.

    CAS  PubMed  Google Scholar 

  67. Chan, S.I., Lu, Y.J., Nagababu, P., Maji, S., Hung, M.C., Lee, M.M., Hsu, I.J., Minh, P.D., Lai, J.C.H., and Ng, K.Y., Angew. Chem., Int. Ed., 2013, vol. 52, p. 3731.

    CAS  Google Scholar 

  68. Liu, C.C., Mou, C.Y., Yu, S.S.F., and Chan, S.I., Energy Environ. Sci., 2016, vol. 9, p. 1361.

    Google Scholar 

  69. Ikbal, S.A., Colomban, C., Zhang, D., Delecluse, M., Brotin, T., Dufaud, V., Dutasta, J.-P., Sorokin, A.B., and Martinez, A., Inorg. Chem., 2019, vol. 58, p. 7220.

    CAS  PubMed  Google Scholar 

  70. Zhang, D., Bousquet, B., Mulatier, J.C., Pitrat, D., Jean, M., Vanthuyne, N., Guy, L., Dutasta, J.P., and Martinez, A., J. Org. Chem., 2017, vol. 82, p. 6082.

    CAS  PubMed  Google Scholar 

  71. Raynes, S., Shan, M.A., and Taylor, R.A., Dalton Trans., 2019, vol. 48, p. 10364.

    CAS  PubMed  Google Scholar 

  72. Kirchon, A., Feng, L., Drake, H.F., Joseph, E.A., and Zhou, H.-C., Chem. Soc. Rev., 2018, vol. 47, p. 8611.

    CAS  PubMed  Google Scholar 

  73. Starokon, E.V., Parfenov, M.V., Pirutko, L.V., Abornev, S.I., and Panov, G.I., J. Phys. Chem. C, 2011, vol. 115, p. 2155.

    CAS  Google Scholar 

  74. Panov, G.I., Sobolev, V.I., Dubkov, K.A., Parmon, V.N., Ovanesyan, N.S., Shilov, A.E., and Shteinman, A.A., React. Kinet. Catal. Lett., 1997, vol. 61, p. 251.

    CAS  Google Scholar 

  75. Dubkov, K.A., Sobolev, V.I., Talsi, E.P., Rodkin, M.A., Watkins, N.H., Shteinman, A.A., and Panov, G.I., J. Mol. Catal. A, 1997, vol. 123, p. 155.

    CAS  Google Scholar 

  76. Ovanesyan, N.S., Shteinman, A.A., Dubkov, K.A., Sobolev, V.I., and Panov, G.I., Kinet. Catal., 1998, vol. 39, p. 792.

    CAS  Google Scholar 

  77. Ovanesyan, N.S., Shteinman, A.A, Dubkov, K.A., Pyalling, A.A., J. Ragioanal. Nucl. Chem., 2000, vol. 246, p. 149.

    CAS  Google Scholar 

  78. Dubkov, K.A., Ovanesyan, N.S., Shteinman, A.A., Starokon, E.V., and Panov, G.I., J. Catal., 2002, vol. 207, p. 341.

    CAS  Google Scholar 

  79. Xia, H., Sun, K., Sun, K., Feng, Z., Li, W.X., and Li, C., J. Phys. Chem. C, 2008, vol. 112, p. 9001.

    CAS  Google Scholar 

  80. Snyder, B.E.R., Vanelderen, P., Bols, M.L., Hallaert, S.D., Böttger, L.H., Ungur, L., Pierloot, K., Schoonheydt, R.A., Sels, B.F., and Solomon, E.I., Nature, 2016, vol. 536, p. 317.

    CAS  PubMed  Google Scholar 

  81. Hammond, C., Forde, M.M., Ab Rahim, M.H., Thetford, A., He, Q., Jenkins, R.L., Dimitratos, N., Lopes-Sanchez, J.A., Dummer, N.F., Murphy, D.M., Carley, A.F., Taylor, S.H., Willock, D.J., Stangland, E.E., Kang, J., et al., Angew. Chem., Int. Ed., 2012, vol. 51, p. 5129.

    CAS  Google Scholar 

  82. Hammond, C., Hermans, I., and Dimitratos, N., ChemCatChem, 2015, vol. 7, p. 434.

    CAS  Google Scholar 

  83. Tabor, E., Lemishka, M., Sobalik, Z., Mlekodaj, K., Andrikopoulos, P.C., Dedecek, J., and Sklenak, S., Commun. Chem., 2019, vol. 2, p. 1.

    CAS  Google Scholar 

  84. Xiao, P., Wang, Y., Nishitoba, T., Kondo, J.N., and Yokoi, T., Chem. Commun., 2019, vol. 55, no. 20, p. 2896.

    CAS  Google Scholar 

  85. Snyder, B.E.R., Bols, M.L., Schoonheydt, R.A., Sels, B.F., and Solomon, E.I., Chem. Rev., 2018, vol. 118, p. 2718.

    CAS  PubMed  Google Scholar 

  86. Arutyunov, V., Catal. Today, 2013, vol. 215, p. 243.

    CAS  Google Scholar 

  87. Parfenov, M.V., Starokon, E.V., Pirutko, L.V., and Panov, G.I., J. Catal., 2014, vol. 318, p. 14.

    CAS  Google Scholar 

  88. Grundner, S., Luo, W., Sanchez-Sanchez, M., and Lercher, J.A., Chem. Commun., 2016, vol. 52, p. 2553.

    CAS  Google Scholar 

  89. Tomkins, P., Mansouri, A., Bozbag, S.E., Krumeich, F., Park, M.B., Alayon, E.M., Ranocchiari, M., and Bokhoven, J.A., Angew. Chem., Int. Ed., 2016, vol. 55, p. 5467.

    CAS  Google Scholar 

  90. Pappas, D.K., Borfecchia, E., Dyballa, M., Pankin, I.A., Lomachenko, K.A., Martini, A., Signorile, M., Teketel, S., Arstad, B., Berlier, G., Lamberti, C., Bordiga, S., Olsbye, U., Lillerud, K.P., Svelle, S., and Beato, P., J. Am. Chem. Soc., 2017, vol. 139, p. 14961.

    CAS  PubMed  Google Scholar 

  91. Pappas, D., Martini, A., Dyballa, M., Kvande, K., Teketel, S., Lomachenko, K., Baran, R., Glatzel, P., Arstad, B., Berlier, G., Lamberti, C., Bordiga, S., Olsbye, U., Svelle, S., Beato, P., and Borfecchia, E., J. Am. Chem. Soc., 2018, vol. 140, p. 15270.

    CAS  PubMed  Google Scholar 

  92. Knorpp, A.J., Pinar, A.B., Newton, M., Sushkevich, V., and Bokhoven, J.A., ChemCatChem, 2018, vol. 10, p. 5593.

    CAS  Google Scholar 

  93. Sushkevich, V.L. and Bokhoven, J.A., ACS Catal., 2019, vol. 9, p. 6293.

    CAS  Google Scholar 

  94. Osadchii, D.Y., Olivos-Suarez, A.I., Szécsény, Á., Li, G., Nasalevich, M.A., Dugulan, I.A., Crespo, P.S., Hensen, E.J.M., Veber, S.L., Fedin, M.V., Sankar, G., Pidko, E.A., and Gascon, J., ACS Catal., 2018, vol. 8, p. 5542.

    CAS  Google Scholar 

  95. Baek, J., Rungtaweevoranit, B., Pei, X.K., Park, M., Fakra, S.C., Liu, Y.S., Matheu, R., Alshmimri, S.A., Alshehri, S., Trickett, C.A., Somorjai, G.A., and Yaghi, O.M., J. Am. Chem. Soc., 2018, vol. 140, p. 18208.

    CAS  PubMed  Google Scholar 

  96. Zheng, J., Ye, J., Ortuño, M.A., Fulton, J.L., Gutiérrez, O.Y., Camaioni, D.M., Motkuri, R.K., Li, Z., Webber, T.E., Mehdi, B.L., Browning, N.D., Penn, R.L., Farha, O.K., Hupp, J.T., Truhlar, D.G., Cramer, C.J., and Lercher, J.A., J. Am. Chem. Soc., 2019, vol. 141, p. 9292.

    PubMed  Google Scholar 

  97. Smeets, P.J., Groothaert, M.H., and Schoonheydt, R.A., Catal. Today, 2005, vol. 110, p. 303.

    CAS  Google Scholar 

  98. Woertink, J.S., Smeets, P.J., Groothaert, M.H., Wance, M.A., Sels, B.F., Schoonheydt, R.A., and Solomon, E.I., Proc. Natl. Acad. Sci., 2009, vol. 106, p. 18 908.

    Google Scholar 

  99. Smeets, P.J., Woertink, B.F., Sels, B.F., Solomon, E.I., and Schoonheydt, R.A., Inorg. Chem., 2010, vol. 49, p. 3573.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Smeets, P.J., Hadt, R.G., Woertink, J.S., Vanelderen, P., Schoonheydt, R.A., Sels, B.F., and Solomon, E.I., J. Am. Chem. Soc., 2010, vol. 132, p. 14736.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ravi, M., Ranocchiari, M., and Bokhoven, J.A., Angew. Chem., Int. Ed., 2017, vol. 56, p. 16464.

    CAS  Google Scholar 

  102. Tomkins, P., Ranocchiari, M., and Bokhoven, J.A., Acc. Chem. Res., 2017, vol. 50, p. 418.

    CAS  PubMed  Google Scholar 

  103. Narsimhan, K., Iyoki, K., Dinh, K., and Román-Leshkov, Y., ACS Cent. Sci., 2016, vol. 2. 424.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dinh, K.T., Sullivan, M.M., Serna, P., Meyer, R.J., Dinca, M., and Roman-Leshkov, Y., ACS Catal., 2018, vol. 8, p. 8306.

    CAS  Google Scholar 

  105. Zhou, H.-C., Long, J.R., and Yaghi, O.M., Chem. Rev., 2012, vol. 112, p. 673.

    CAS  PubMed  Google Scholar 

  106. Nath, I., Chakraborty, J., and Verpoort, F., Chem. Soc. Rev., 2016, vol. 45, p. 4127.

    CAS  PubMed  Google Scholar 

  107. Verma, P., Vogiatzis, K.D., Planas, N., Borycz, J., Xiao, D.J., Long, J.R., Gagliardi, L., and Truhlar, D.G., J. Am. Chem. Soc., 2015, vol. 137, p. 5770.

    CAS  PubMed  Google Scholar 

  108. Szecsenyi, A., Li, G., Gascon, J., and Pidco, E.A., Chem. Sci., 2018, vol. 9, p. 6765.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vitillo, J.G., Bhan, A, Cramer, C.J., Lu, C.C., and Gagliardi, L., ACS Catal., 2019, vol. 9, p. 2870.

    CAS  Google Scholar 

  110. Ikuno, T., Zheng, J., Vjunov, A., Sanchez-Sanchez, M., Ortuño, M.A., Pahls, D.R., Fulton, J.L., Camaioni, D.M., Li, Z., Ray, D., and Lercher, J.A., J. Am. Chem. Soc., 2017, vol. 139, p. 10294.

    CAS  PubMed  Google Scholar 

  111. Yang, D. and Gates, B.C., ACS Catal., 2019, vol. 9, p. 1779.

    CAS  Google Scholar 

  112. Lange, J.-P., Sushkevich, V.L., Knorpp, A.J., and Bokhoven, J.A., Ind. Eng. Chem. Res., 2019, vol. 58, p. 8674.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I deeply appreciate the interest and friendly cooperation of Lydia Vladimirovna Avdeeva, Cand. Sci. (Chem.), and her assistance in preparing this manuscript for publication.

Funding

This study was conducted within the framework of State assignment no. 0089-2019-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shteinman.

Additional information

Translated by O. Kadkin

Abbreviations: A, alcohol; AS, active site; EPR, electron paramagnetic resonance; ESI-MS, electrospray ionization mass spectrometry; EXAFS, extended X-ray absorption fine structure spectroscopy; HERFD, high-energy resolution fluorescence signal detection; K, ketone; KIE, kinetic isotope effect; L, ligand; MeCN, acetonitrile; MMO, methane monooxygenase; MMOB, regulatory protein B; MMOH, hydroxylase; MMOR, reductase; MCD, magnetic circular dichroism; MOF, metal-organic frameworks; NADH, nicotine adenine dinucleotide; RC, retention of configuration; RRS, resonance Raman spectroscopy; pMMO, copper-containing membrane-bound particulate MMO; sMMO, iron-containing soluble MMO; TON, turnover number of the catalyst; TPA, tris(2-pyridylmethyl) amine; TRRR, time resolution resonance Raman spectroscopy; XAS, X-ray absorption spectroscopy; XRD, X-ray diffraction; QM/MM, quantum mechanics/molecular mechanics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shteinman, A.A. Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol. Kinet Catal 61, 339–359 (2020). https://doi.org/10.1134/S0023158420030180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420030180

Keywords:

Navigation