当前位置: X-MOL 学术J. Math. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling carbon nanocones for selective filter
Journal of Mathematical Chemistry ( IF 1.7 ) Pub Date : 2020-06-26 , DOI: 10.1007/s10910-020-01153-y
Pakhapoom Sarapat , Ngamta Thamwattana , Barry J. Cox , Duangkamon Baowan

This paper investigates the potential use of carbon nanocones as selective filtration devices. Using a continuum approach and the Lennard-Jones potential, we determine the energy of truncated carbon nanocones interacting with ions (Na+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} and Cl-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-}$$\end{document}) and water molecules. The Verlet algorithm is adopted to determine the dynamics of the ions and the water molecules as a result of the interaction with the nanocones. The acceptance energy is derived to determine the minimum and critical radii of the truncated nanocones that block the ions and allow only water molecules to pass through. Our results show that the channel with apex angle of 19.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19.2^{\circ}$$\end{document} and opening radius in the range 3.368–3.528 Å gives highest suction energy.

中文翻译:

用于选择性过滤器的碳纳米锥建模

本文研究了碳纳米锥作为选择性过滤装置的潜在用途。使用连续方法和 Lennard-Jones 势,我们确定截断的碳纳米锥与离子相互作用的能量 (Na+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{ amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} 和 Cl-\documentclass [12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt } \begin{document}$$^{-}$$\end{document}) 和水分子。由于与纳米锥相互作用,采用 Verlet 算法来确定离子和水分子的动力学。接受能量用于确定截断的纳米锥的最小和临界半径,这些截锥可以阻挡离子并只允许水分子通过。我们的结果表明,顶角为 19.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} 的通道\usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19.2^{\circ}$$\end{document} 和 3.368–3.528 Å 范围内的开口半径提供最高的吸力。接受能量用于确定截断的纳米锥的最小和临界半径,这些截锥可以阻挡离子并只允许水分子通过。我们的结果表明,顶角为 19.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} 的通道\usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19.2^{\circ}$$\end{document} 和 3.368–3.528 Å 范围内的开口半径提供最高的吸力。接受能量用于确定截断的纳米锥的最小和临界半径,这些截锥可以阻挡离子并只允许水分子通过。我们的结果表明,顶角为 19.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} 的通道\usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19.2^{\circ}$$\end{document} 和 3.368–3.528 Å 范围内的开口半径提供最高的吸力。
更新日期:2020-06-26
down
wechat
bug